武钢4号高炉大修后生产实践

武钢4号高炉大修后生产实践

一、武钢4号高炉大修改造后的生产实践(论文文献综述)

卢正东[1](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中进行了进一步梳理现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。

牛群[2](2020)在《长寿高炉炉缸炉底影响因素研究》文中研究表明炉缸寿命是当前大高炉长寿的决定性因素之一。只有掌握了炉缸内部铁水流动、炉缸焦炭、炭砖及其保护层之间的交互作用规律,才能找出延长炉缸寿命的措施。铁水对炉缸侧壁的冲刷侵蚀是导致炉缸寿命短的主要原因之一。炉缸长寿的关键是在炭砖热面凝结一层渣铁壳,隔离炙热铁水与炭砖的直接接触。炭砖附近的铁水流速和炭砖热面温度是影响渣铁壳凝结的主要因素。影响炉缸侧壁附近铁水流速的主要因素有(1)死料柱焦炭行为(死料柱空隙度分布、焦炭粒度和焦炭密度等);(2)铁口维护制度;(3)炉缸工作状态(死料柱浮起高度和中心透液性等)。砌筑和冷却良好的高炉,如果炭砖形成脆化层,会降低炭砖的导热性能,使炭砖热面温度升高,不利于炭砖热面渣铁壳的新生和稳定存在,这也是导致炉缸寿命短的主要原因之一。本文通过炉缸破损调研、数值仿真和热态实验三种方法对长寿炉缸炉底的影响因素进行了研究,加深了对炉缸内部死料柱焦炭、炭砖脆化层、渣铁壳和炉缸铁水流动规律的认识,对高炉炉缸设计和高炉操作有一定的指导意义。本文首先通过2800m3和5500 m3工业高炉炉缸破损调研的方法详细研究了风口以下1.5m至炉底之间不同炉缸高度和不同径向位置死料柱焦炭的无机矿物组成、石墨化程度、粒度分布、强度和死料柱空隙度分布。结果表明,2800m3工业高炉风口以下2.5m至炉底之间死料柱焦炭内部填充了大量高炉渣。在5500 m3高炉炉缸破损调研中也发现了大量高炉渣浸入风口以下1.8m至铁口中心线之间死料柱焦炭中。死料柱焦炭无机矿物质含量随着距风口距离的增加而增加,平均含量为45%。大部分死料柱焦炭质量是相同条件下入炉焦炭质量的1.43-2.21倍。死料柱焦炭高度石墨化,且越靠近炉底,焦炭粉末石墨化程度越高。2800 m3和5500m3高炉死料柱焦炭平均粒径在直径方向上分别呈“M”和倒“V”型,焦炭平均粒径分别为28.7mm和23.5mm,分别较入炉焦炭降低了 47%和56%。靠近死料柱底部附近,死料柱空隙度随着距风口距离和距炉墙距离的增加而降低,平均空隙度为0.3。其次,在炉缸死料柱焦炭行为研究的基础上,建立了包括死料柱和泥包在内的5500 m3高炉炉缸铁水流动数学模型,研究了不同铁口维护制度(铁口深度、铁口倾角和双铁口出铁等)和不同炉缸工作状态(死料柱浮起高度和中心透液性等)对炉缸侧壁附近铁水流速的影响。结果表明,增加出铁口深度、铁口倾角为10°和选择夹角为180°的双铁口出铁有利于降低炉缸侧壁附近的铁水流速,延长高炉炉缸寿命。当死料柱中心、中间和边缘空隙度分别为0.2、0.3和0.35时,炉缸炉底交界面附近的铁水流速随着死料柱浮起高度(0.8m→0.1m)的降低而大幅度增加,这表明死料柱小幅度浮起可能导致炉缸“象脚状”侵蚀。死料柱浮起高度处于0.6m-0.8m之间有利于高炉炉缸长寿。死料柱沉坐和浮起时,只有当死料柱中心透液性较差区域(空隙度为0.1)分别发展为炉缸直径的26%和50%时才会引起炉缸侧壁附近铁水流速增加。然后,通过2800m3高炉炉缸破损调研分析了碱金属和锌对炉缸炭砖的蚀损机理和炭砖凝结渣铁壳的形成机理。在2800m3高炉炉缸残余炭砖脆化层中含有大量的Zn2SiO4、KA1SiO4、ZnO、KA1Si2O6及少量的 ZnS 和ZnAl2O4。结合当前炭砖和残余炭砖脆化层矿物质组成,揭示了炭砖脆化层的形成机理。在炉缸炭砖热面凝结层和炉底陶瓷垫中均发现了高炉渣的存在,凝结层中的高炉渣主要来源于浸入到焦炭内部的高炉渣,而不是来源于入炉焦炭灰分。最后,设计建造了模拟高炉炉缸冶炼过程的热态实验炉。在炭砖冷面设计有冷却水管模拟炉缸冷却壁。三相交流电电极作为加热源,保证渣铁水温度在1550℃左右。通过热态实验炉炉底吹氮气搅拌熔池来模拟炉缸渣铁水流动。实验发现,当炭砖热面温度低于渣铁壳凝固温度,在炭砖热面就可以形成渣铁壳。在该热态实验中通过在炉缸炭砖中产生钾、钠和锌蒸气,模拟了高炉炉缸持续的钾、钠和锌蒸气对炭砖的破坏。总之,通过本文研究表明,高炉渣通过死料柱焦炭的运动可以被带入铁口以下炉缸区域。由于死料柱焦炭浸入大量高炉渣导致死料柱重力增大,为保证死料柱浮起较高高度应适当增加死铁层深度。在高炉冶炼过程,适宜条件下,炉缸炉底内衬热面能够凝结渣铁壳。为延长高炉炉缸寿命,应制定合理的出铁维护制度和保证入炉焦炭质量,改善死料柱中心透液性,降低炉缸侧壁铁水流速,并严格控制入炉K和Zn负荷,避免炭砖脆化层的形成,促进炭砖热面渣铁壳的形成,隔离与炙热铁水的直接接触,延长高炉炉缸寿命。

何友国[3](2019)在《唐钢2000m3高炉铜冷却壁应用研究》文中研究表明本课题分析总结了高炉应用铜冷却壁后,在炉役前期由于铜冷却壁本身优良的挂渣能力,在高炉原燃料冶金性能变差、入炉粉率增加,高炉操作等因素作用下,造成高炉炉墙形成以铜冷却壁所挂渣皮为基础从下至上的结厚,高炉操作炉型受破坏;同时也分析总结了高炉炉役后期,因铜冷却壁因自身物理化学性质和高炉操作,导致铜冷却壁破损失效的因素。为了保证使用铜冷却壁高炉在炉役前期冶炼的正常运行,一是在判定和处理铜冷却壁结厚方面,唐钢2#高炉在学习借鉴国内高炉处理结厚经验的基础上,通过研究实践总结了一套技术。在判定炉墙结厚的35天内,高炉进行短时间休风45小时,在休风前分组集中插焦,加硅石,先烧掉铜冷却壁所挂渣皮,休风后对结厚方向的冷却壁冷却水改汽化,送风后送水,适当开放边缘气流,形成对结厚体的急冷急热冲击,有利于结厚体的脱落,以达到处理结厚的目的。二是在预防铜冷却壁结厚方面,唐钢2号高炉提出了全流程预防高炉结厚的理念。为了保证使用铜冷却壁高炉在炉役后期的安全运行,唐钢2000m3级高炉总结了铜冷却壁的破损原因、破损铜冷却壁漏水判定。在判定铜冷却壁破损漏水后,利用休风机会,加装铜冷却柱、勾管、冷却水管改工业水开路冷却等措施,来维持高炉的安全运行,从而达到延长一代炉龄,为高炉大修准备争取时间,减小高炉经济损失。图25幅;表21个;参56篇。

梁利生[4](2012)在《宝钢3号高炉长寿技术的研究》文中认为延长高炉寿命不仅可以直接减少昂贵的大修费用,而且可以避免由于停产引起的巨大经济损失。延长高炉寿命已经成为广大高炉炼铁工作者重点关注的课题。高炉长寿是一项综合的系统工程,影响因素很多,而高炉一代炉役寿命取决于这些因素的综合效果。本文对宝钢3号高炉长寿技术,从设计制造、施工砌筑、操作管理到检测维护等方面进行了全面系统的研究,形成了具有3号高炉自身特点的长寿综合技术。在认真研究和分析1、2号高炉设计上存在的不足、并吸取世界长寿高炉经验的基础上,对宝钢3号高炉炉型设计、耐材配置、冷却设备选型、检测监控设置等方面进行了研究和优化,并大胆采用了一些长寿新技术,为3号高炉炉况稳定和长寿奠定了基础。宝钢3号高炉在炉型设计时,对设计炉型与操作炉型的结合问题进行了认真的研究,充分考虑到投产后形成实际操作炉型的合理性,特别在高径比、死铁层深度、炉腹角及炉身角等方面进行了优化,并对炉身中下部厚壁与炉身上部薄壁的交界处进行了圆滑过渡的处理,有利于煤气流分布的控制。3号高炉炉体冷却系统采用全铸铁冷却壁形式和纯水密闭循环冷却,按照炉体不同部位的工作环境和工艺要求,配置了不同结构型式的冷却壁和耐火材料炉衬,尤其在炉缸H1-H4段采用了新式高冷却强度横型冷却壁,并配置美国UCAR高导热性小块炭砖,为3号高炉炉缸长期保持良好的状态起到了关键性作用。宝钢3号高炉投产以来,通过强化原燃料质量管理、严格控制碱金属和锌负荷入炉、优化炉料结构,并根据不同时期的生产条件,结合高炉自身特点和难点,不断研究、优化上部装料制度和下部送风制度,控制合适的鼓风动能和炉体热负荷,实现合理的煤气流分布,从而确保3号高炉炉况长期稳定顺行,取得世界一流的技术经济指标和长寿业绩。针对3号高炉投产后冷却壁水管较早出现破损的原因进行了分析,对冷却系统进行了一系列优化改造,大大提高了冷却强度,改善了水质,有效缓解了冷却壁水管的破损。并通过实施安装微型冷却器、硬质压入、人工造壁、整体更换S3、S4段冷却壁等多项长寿维护措施,显着改善了炉身的长寿状况,确保3号高炉炉役中后期仍然保持规整的操作炉型,为强化冶炼创造了条件。在投产后的很长一段时间内,3号高炉的炉缸一直处于良好的状态,没有像1、2号高炉第一代炉役那样一直受炉缸侧壁温度的困扰。然而随着炉役时间的延长,特别是在炉役后期超过设计炉龄后仍然保持长时间的高冶炼强度,炉缸侧壁温度呈现逐步上升的趋势。3号高炉通过进一步提高炉缸冷却强度、加强出铁口状态维护、改善炉缸活跃性、强化炉缸状态监控、炉缸压浆等多项长寿维护措施的研究和实施,保证了3号高炉在炉役后期继续保持强化冶炼的前提下,侧壁温度总体安全受控,从而有效延长了3号高炉的寿命。通过对宝钢3号高炉长寿综合技术的研究和实施,截至2012年10月,宝钢3号高炉已稳定运行了18年,累计产铁量达到6541万吨,单位炉容产铁量达到15036t/m3,目前还在生产中,创造了国内长寿高炉的记录。

陈令坤,傅连春[5](2013)在《武钢2200m3薄壁炉身高炉上下部调剂方针的演化特征研究》文中进行了进一步梳理武钢1号高炉作为国内首个薄壁炉身的高炉,投产以来(包括一次中修),共生产了10多年的时间,1号高炉一代炉役的平均利用系数为2.22t/m3.d,燃料比为561.75kg/t.hm,尽管高炉利用系数维持了较高水平,但燃料比偏高,1号高炉在如何适应频繁变化的原料、确保炉型稳定方面遇到了一些问题,本文将对薄壁炉身高炉在不同炉役阶段上下部操作方针的演化规律进行了研究,1号高炉为应对原料的波动,采用了缩小进风面积、提高风温、富氧、大喷煤、加强原料管理、优化布料、稳定炉温等措施,以更好适应武钢原燃料条件不断劣化的趋势,维持了高炉的顺行。

陆隆文,杨佳龙[6](2012)在《武钢炼铁“十一五”生产技术及装备进步》文中提出总结"十一五"期间武钢炼铁生产技术装备及环保等方面的总体情况,分析高炉高强化生产的工艺技术与设备保障,阐述了高炉主要指标创历史水平的技术措施,提出了存在的问题与应对方法等。

曾武[7](2012)在《企业产品创新能力和产品创新及工艺创新模式的关系研究》文中研究说明技术创新模式可以分为产品创新和工艺创新。工艺创新通过降低生产成本增加企业的盈利水平,产品创新通过增加产品的差异化程度提高产品的价格增加企业的盈利水平。企业的产品质量、产品创新能力以及市场竞争强度对企业的技术创新模式有重要的影响。目前理论方面的研究都没有把产品创新能力的因素放到影响企业技术创新模式的理论框架中。同时,我国大型企业产品创新能力对技术创新模式的影响也缺少系统的研究。本文在目前研究的基础上,在理论和案例上对企业产品创新能力以及企业产品质量和市场竞争强度对产品创新和工艺创新模式选择的影响进行了研究。首先应用双寡头博弈的均衡方法,引入了产品创新成本系数的概念,建立了企业的产品创新能力、市场竞争强度以及企业的产品质量和技术创新模式的关系,推导出了企业创新模式的判据式。得出了以下结论:为了获得企业最大的盈利水平,当企业产品创新能力很强时,在竞争强度高的Bertrand和竞争强度低的Cournot竞争中,高质量企业和低质量企业都倾向于选择产品创新。当企业产品创新能力下降到一定的程度,高质量企业在Bertrand竞争中倾向于选择产品创新,在Cournot竞争中倾向于选择工艺创新;低质量企业在Bertrand竞争中倾向于选择工艺创新,在Cournot竞争中倾向于选择产品创新。当企业产品创新能力很低时,在Bertrand和Cournot竞争中,高质量企业和低质量企业都倾向于选择工艺创新。在理论推导时,分别采用了静态博弈和动态博弈的均衡方法,得出了总体的趋势一致的结论,只是企业选择工艺创新和产品创新对于产品创新能力的判据有所区别。在应用动态双寡头博弈的均衡方法时,本文采用Stackelberg动态寡头市场以产量为决策内容的Cournot竞争模式的均衡分析方法,对动态寡头市场以价格为决策内容的Bertrand竞争模式进行了分.并应用在Mussa和Rosen的产品纵向差异模型中,推导出了在此条件下的均衡结果。在上述理论研究的框架下,本文以武汉钢铁公司宝山钢铁公司的企业的技术创新模式为案例,对企业的产品创新能力、产品质量以及市场竞争强度和技术创新模式的关系进行了研究,对理论研究的结果进行了验证和解释。本文主要用相对吨钢成本增量对工艺创新进行测量,用相对吨钢收入增量对产品创新进行测量,用行业销售利润率的水平对市场竞争强度进行测量,销售利润率高代表竞争强度低的Cournot竞争,销售利润率低代表竞争强度高的Bertrand竞争。用胡淑华(2000)提出的产品开发能力综合值的方法测量企业产品创新能力。本文在以下几个方面对工艺创新和产品创新的组合研究有新的贡献:(1)在目前的关于企业进行工艺创新和产品创新的研究模型中,都没有把企业的创新能力作为考虑的因素。本研究建立了产品创新能力和企业技术创新模式的关系。完善了产品创新和工艺创新组合研究的理论体系;(2)采用Stackelberg的分析方法,对动态寡头市场以价格为决策内容的Bertrand竞争模式进行了分析,推导出了在此条件下的均衡结果;(3)采用相对准确和规范的吨钢销售收入和吨钢成本数据,提出用相对吨钢收入增量和相对吨钢成本增量来测量产品创新和工艺创新。这种测量方法能够较好解释和验证理论结果。新的测量方法为今后进一步研究产品创新和工艺创新提供了一个新的方法;(4)提出了国有大型钢铁企业在不同的产品质量、产品创新能力以及市场竞争强度等条件下的技术创新模式,并对企业如何结合自身的特点以及市场条件选择合适的技术创新模式提出了建议。

傅连春,张世爵[8](2011)在《武钢5号高炉炼铁技术进步》文中研究说明武钢5号高炉1991年10月建成投产,它采用了当时世界上众多的先进炼铁工艺技术,使武钢炼铁技术迈上了一个新的台阶。20年来,通过不断对这些引进技术的消化、吸收和创新,为武钢新建和改建的高炉奠定了坚实的技术基础,使武钢高炉在现代化和大型化方面取得重大进展,达到了国际先进水平。

陆隆文,杨佳龙[9](2011)在《武钢炼铁“十一五”技术装备进步》文中研究指明总结了武钢在过去的5年内的生产技术装备的总体情况,分析了。高炉高强化生产的工艺技术与设备保障,阐述了高炉主要指标创历史与世界一流水平的技术措施。提出了存在的问题与应对方法等。

熊亚飞[10](2010)在《大型高炉生产过程的质量控制与改进》文中研究说明近年来,中国在生铁产量高速增长的同时,高炉炼铁技术也得到了较大进步。在节能减排的国内国际背景下,我国钢铁企业都在科学发展观的指导下,积极推进清洁生产、大力发展循环经济,不断提高劳动生产率。其中,高炉大型化就是实现上述目标的有效途径之一。大型高炉是国家钢铁工业结构调整、淘汰落后,降低成本,改善环境,提高钢铁市场竞争力的生力军,高炉大型化是现代钢铁工业发展的重要标志。中国高炉炼铁正在快速地向高效化、大型化方向发展,在此过程中,由于大部分是从小高炉过度到大高炉,许多技术与工艺质量管理模式需要升级与完善。根据国际钢铁形势和我国国情和国力,中国高炉逐步走向大型化是主流。如何做好大型高炉生产过程各个环节的质量控制是保证大型高炉体现竞争力、保证良好的经济效益的重要保证。论文主要运用质量控制和改进理论,结合武钢股份炼铁总厂高炉生产过程中质量控制的现状,从人、材料、机器、生产工艺和工作环境等方面加以分析,找出生产过程中影响高炉冶炼质量的主要因素,对这些因素加以控制,来提高工作与产品的质量。全文共分五个部分。第一部分是绪论部分,主要阐述了论文选题的背景与研究意义、国内外文献综述、研究思路与内容;第二部分是基础理论部分,主要论述了质量管理、质量控制和质量改进等理论,为下文的展开打下理论基础;第三部分是从高炉冶炼生产过程的性质和特点出发,介绍高炉冶炼的流程,并从人员、设备、工艺、材料和环境等方面,分析影响高炉冶炼质量的因素,确定引起质量缺陷的主要影响因素;第四部分提出了高炉生产过程的质量控制模型,并介绍该模型在武钢高炉冶炼过程的具体运用情况和效果;第五部分是本文的结论。

二、武钢4号高炉大修改造后的生产实践(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、武钢4号高炉大修改造后的生产实践(论文提纲范文)

(1)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)

摘要
Abstract
引言
第1章 文献综述
    1.1 现代高炉长寿概况
    1.2 高炉长寿设计研究进展
        1.2.1 炉缸结构
        1.2.2 炉底死铁层
    1.3 高炉炉衬与冷却壁选材研究进展
        1.3.1 耐火材料
        1.3.2 冷却壁
    1.4 高炉损毁机理研究进展
        1.4.1 炉缸炉底损毁机理
        1.4.2 炉体冷却壁损毁机理
    1.5 高炉传热机理研究进展
        1.5.1 高炉炉缸炉底传热
        1.5.2 高炉炉体冷却壁传热
    1.6 本论文的提出和研究内容
        1.6.1 论文提出
        1.6.2 研究内容
第2章 高炉损毁机理研究方法
    2.1 高炉破损调查
        2.1.1 破损调查内容
        2.1.2 破损调查方法
    2.2 实验研究方法
        2.2.1 炭砖表征
        2.2.2 冷却壁表征
        2.2.3 渣皮表征
    2.3 高炉炉衬与冷却壁传热性能研究
        2.3.1 传热模型建立
        2.3.2 模型验证
第3章 武钢高炉炉缸炉底损毁机理研究
    3.1 高炉炉缸炉底损毁特征分析
        3.1.1 武钢4 号高炉破损调查(第3 代)
        3.1.2 武钢5 号高炉破损调查(第1 代)
    3.2 炉缸炉底损毁机理研究
        3.2.1 炉缸环缝侵蚀
        3.2.2 炉缸炉底象脚区域损毁
    3.3 高炉钛矿护炉研究
        3.3.1 Ti(C,N)形成热力学分析
        3.3.2 破损调查取样与表征
        3.3.3 武钢高炉钛矿护炉效果分析
    3.4 本章小结
第4章 武钢高炉冷却壁损毁机理研究
    4.1 高炉冷却壁损毁特征分析
        4.1.1 武钢5 号高炉破损调查(第1 代)
        4.1.2 武钢1 号高炉破损调查(第3 代)
        4.1.3 武钢7 号高炉破损调查(第1 代)
        4.1.4 武钢6 号高炉破损调查(第1 代)
    4.2 球墨铸铁冷却壁损毁机理研究
        4.2.1 力学性能分析
        4.2.2 显微结构分析
        4.2.3 损毁机理分析
    4.3 铜冷却壁损毁机理研究
        4.3.1 力学性能分析
        4.3.2 理化指标分析
        4.3.3 显微结构分析
        4.3.4 损毁机理分析
    4.4 本章小结
第5章 武钢高炉炉缸内衬设计优化研究
    5.1 高炉炉缸全生命周期温度场分析
        5.1.1 烘炉阶段炉缸温度场
        5.1.2 炉役初期炉缸温度场
        5.1.3 炉役全周期炉缸温度场
        5.1.4 炉役自保护期炉衬厚度
    5.2 炉缸传热体系结构优化研究
        5.2.1 炉缸炭砖传热体系优化
        5.2.2 炉缸冷却结构优化
    5.3 高炉炉缸长寿化设计与操作
        5.3.1 炉缸结构设计和选型
        5.3.2 高炉炉缸长寿操作技术
    5.4 本章小结
第6章 武钢高炉冷却壁长寿优化研究
    6.1 高炉冷却壁渣皮特性及行为研究
        6.1.1 渣皮物相组成及微观结构研究
        6.1.2 渣皮流动性分析
        6.1.3 渣皮导热性能及挂渣能力分析
    6.2 高炉冷却壁渣皮行为监测研究
        6.2.1 渣皮厚度及热流强度计算
        6.2.2 铜冷却壁渣皮监测系统研究
    6.3 高炉冷却壁长寿技术对策研究
        6.3.1 高炉冷却壁长寿设计优化
        6.3.2 高炉冷却壁操作优化
        6.3.3 高炉冷却壁渣皮厚度管控技术
    6.4 本章小结
第7章 结论与展望
    7.1 结论
    7.2 展望
本论文主要创新点
致谢
参考文献
附录1 攻读博士学位期间取得的科研成果
附录2 攻读博士学位期间参加的科研项目

(2)长寿高炉炉缸炉底影响因素研究(论文提纲范文)

致谢
摘要
Abstract
1 引言
2 文献综述
    2.1 世界炼铁工业概述
        2.1.1 古代和炼铁的起源及世界钢铁中心
        2.1.2 高炉巨型化发展概况
        2.1.3 高炉长寿发展概况
    2.2 高炉炉缸侧壁高温点和烧穿位置
    2.3 炉缸炉底侵蚀原因
        2.3.1 铁水环流
        2.3.2 死铁层深度
        2.3.3 砌筑结构
        2.3.4 碱金属和锌侵蚀
        2.3.5 炭砖脆化层
    2.4 高炉炉缸死料柱
        2.4.1 死料柱作用和更新周期
        2.4.2 死料柱焦炭微观形貌及成分研究
        2.4.3 死料柱焦炭粒度分布研究
        2.4.4 死料柱空隙度分布研究
    2.5 高炉炉缸炭砖保护层研究
        2.5.1 富铁层
        2.5.2 富高炉渣层
        2.5.3 富石墨碳层
        2.5.4 富钛层
    2.6 炭砖抗渣铁和碱金属侵蚀性能检测方法
    2.7 研究意义
    2.8 研究内容和研究方法
3 炉缸死料柱焦炭研究
    3.1 炉缸焦炭取样过程和分析方法介绍
    3.2 死料柱焦炭结构和成分研究
        3.2.1 BF A入炉焦炭成分和微观结构研究
        3.2.2 BF A死料柱焦炭成分和微观结构研究
        3.2.3 BF B死料柱焦炭成分和微观结构研究
        3.2.4 BF A死料柱焦炭石墨化研究
        3.2.5 死料柱无机矿物质含量变化研究
        3.2.6 死料柱焦炭石墨化和无机矿物质转变对高炉影响研究
    3.3 死料柱焦炭粒径分布研究
        3.3.1 BF A死料柱焦炭粒度分布研究
        3.3.2 BF B死料柱焦炭粒度分布研究
        3.3.3 BF A死料柱焦炭强度研究
    3.4 死料柱空隙度分布研究
    3.5 本章小结
4 高炉铁口日常维护制度下炉缸铁水流场模拟
    4.1 物理模型和数学模型
        4.1.1 数学模型的简化
        4.1.2 物理模型
        4.1.3 数学模型和边界条件
        4.1.4 网格的划分
    4.2 铁口深度对炉缸铁水流动的影响
        4.2.1 死料柱沉坐
        4.2.2 死料柱浮起
        4.2.3 生产实践实例分析
    4.3 泥包大小对炉缸铁水流动的影响
        4.3.1 死料柱沉坐
        4.3.2 死料柱浮起
    4.4 铁口倾角对炉缸铁水流动的影响
        4.4.1 死料柱沉坐
        4.4.2 死料柱浮起
    4.5 双铁口夹角对炉缸铁水流动的影响
        4.5.1 死料柱沉坐
        4.5.2 死料柱浮起
    4.6 模型验证
    4.7 本章小结
5 高炉特定炉缸状态下的铁水流场模拟
    5.1 死料柱浮起高度对炉缸铁水流动的影响
    5.2 死料柱中心透液性对炉缸铁水流动的影响
        5.2.1 死料柱沉坐
        5.2.2 死料柱浮起
    5.3 炉底温度降低对炉缸铁水流动的影响
        5.3.1 死料柱沉坐
        5.3.2 死料柱浮起
    5.4 本章小结
6 炉缸炭砖脆化层和保护层研究
    6.1 炉缸残余炭砖和保护层取样位置介绍
    6.2 炉缸炉底炭砖剩余厚度调研
    6.3 炉缸炭砖结构及成分和理化性能研究
        6.3.1 原始SGL炭砖微观形貌
        6.3.2 用后第9层SGL炭砖热面微观形貌
        6.3.3 用后第11层SGL炭砖热面微观形貌
        6.3.4 用后第12层SGL炭砖热面微观形貌
        6.3.5 用后第9层SGL炭砖理化性能分析
    6.4 炉缸炭砖脆化层形成机理研究
    6.5 炉缸炭砖保护层成分及微观结构研究
        6.5.1 用后第3层武彭炭砖热面保护层微观形貌
        6.5.2 用后第4层SGL炭砖热面保护层微观形貌
        6.5.3 用后第9层SGL炭砖热面保护层微观形貌
        6.5.4 炉底陶瓷垫热面微观形貌
    6.6 炉缸炭砖保护层形成机理研究
    6.7 本章小结
7 炭砖抗渣铁和碱金属及锌侵蚀设备的开发
    7.1 实验设备介绍
    7.2 实验步骤
    7.3 抗铁水侵蚀实验结果
    7.4 抗高炉渣侵蚀实验结果
    7.5 抗碱金属和锌侵蚀实验结果
    7.6 炭砖内部温度变化
    7.7 本章小结
8 结论与工作展望
    8.1 结论
    8.2 创新点
    8.3 工作展望
参考文献
作者简历及在学研究成果
学位论文数据集

(3)唐钢2000m3高炉铜冷却壁应用研究(论文提纲范文)

摘要
abstract
引言
第1章 文献综述
    1.1 研究高炉应用铜冷却壁的背景及意义
    1.2 高炉冷却设备介绍
        1.2.1 高炉冷却壁分类
        1.2.2 铜冷却壁和铸铁冷却壁的对比
    1.3 国内外高炉铜冷却壁应用情况
        1.3.1 国外高炉铜冷却壁应用情况
        1.3.2 国内高炉铜冷却壁应用情况
    1.4 本章小结
    1.5 本课题研究目标及研究内容
第2章 唐钢2000m~3高炉本体冷却设备概况
    2.1 冷却系统设计流程及参数
        2.1.1 冷却系统概况
        2.1.2 冷却系统技术参数
    2.2 唐钢2000m~3高炉冷却系统监控和管理制度
        2.2.1 工艺技术控制标准
        2.2.2 工艺技术控制措施
第3章 唐钢2~#高炉炉役前期铜冷却壁应用研究
    3.1 铜冷却壁对高炉操作炉型的影响
        3.1.1 铜冷却壁对高炉操作炉型影响机理
        3.1.2 铜冷却壁对高炉操作炉型影响的矛盾性
        3.1.3 唐钢2~#高炉铜冷却壁对高炉操作炉型影响现状
    3.2 使用铜冷却壁后唐钢高炉炉墙结厚的征兆
        3.2.1 炉墙温度低
        3.2.2 料尺有尺差
        3.2.3 十字测温边缘低
        3.2.4 炉顶成像边缘出现亮光
        3.2.5 炉缸工作不均
    3.3 唐钢2~#高炉炉墙结厚的原因分析
        3.3.1 高炉大修扩容后炉型不合理
        3.3.2 原燃料
        3.3.3 操作因素导致高炉结厚
    3.4 处理唐钢2~#高炉铜冷却壁结厚方法及实践
        3.4.1 高炉结厚处理的一般原则
        3.4.2 唐钢2~#高炉处理结厚实践
    3.5 预防唐钢2~#铜冷却壁结厚的措施
        3.5.1 实施全流程原燃料整粒工作
        3.5.2 高炉制定原燃料管理措施
        3.5.3 实施烧结系统入机料碱金属和锌元素管控工作
        3.5.4 稳态烧结工艺技术的实施稳定烧结矿冶金性能
        3.5.5 高炉操作制度的合理管控
        3.5.6 建立高炉结厚预警模型
    3.6 应对铜冷却壁结厚效果
    3.7 本章小结
第4章 唐钢1~#高炉炉役后期铜冷却壁应用研究
    4.1 概述
    4.2 铜冷却壁破损原因分析
        4.2.1 铜冷却壁化学侵蚀
        4.2.2 铜冷却壁应力的破损作用
        4.2.3 铜冷却壁磨损
        4.2.4 操作制度的影响
    4.3 铜冷却壁在唐钢1~#高炉炉役末期破损征兆及应对措施
        4.3.1 冷却壁破损征兆
        4.3.2 冷却壁破损应对措施
        4.3.3 铜冷却壁破损期高炉操作制度调整和管理措施
    4.4 实施效果
    4.5 本章小结
结论
参考文献
致谢
导师简介
企业导师简介
作者简介
学位论文数据集

(4)宝钢3号高炉长寿技术的研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 高炉炼铁概述
        1.1.1 我国现代高炉炼铁技术发展概况
        1.1.2 世界大型高炉概况
        1.1.3 高炉炼铁原理及工艺概况
    1.2 高炉长寿概述
        1.2.1 国内外高炉长寿概况
        1.2.2 高炉长寿限制性环节
        1.2.3 高炉炉缸烧穿事故
    1.3 课题提出与研究内容
        1.3.1 课题提出
        1.3.2 研究内容
第2章 宝钢3号高炉长寿设计技术
    2.1 高炉炉型设计
        2.1.1 合适的高径比(Hu/D)及死铁层深度
        2.1.2 合理的炉腹角(A)及炉身角(B)
    2.2 高炉炉衬设计
        2.2.1 炉缸、炉底耐材设计
        2.2.2 风口及炉腹
        2.2.3 炉腰及炉身
    2.3 高炉冷却系统设计
        2.3.1 冷却设备形式
        2.3.2 冷却系统类型
    2.4 高炉检测系统设计
        2.4.1 冷却系统的检测
        2.4.2 炉体炉缸温度的检测
    2.5 宝钢3号高炉设计的改进方向
    2.6 小结
第3章 宝钢3号高炉制造及施工技术
    3.1 宝钢3号高炉冷却壁制造技术
        3.1.1 原料化学成分控制
        3.1.2 球化剂的选择
        3.1.3 冷却水管材质及防渗碳处理
    3.2 宝钢3号高炉炉缸耐材施工技术
        3.2.1 炉缸炭砖砌筑标准
        3.2.2 宝钢3号高炉炉缸炭砖施工技术
        3.2.3 砌筑质量对炉缸长寿的影响
    3.3 制造及施工的改进方向
    3.4 小结
第4章 宝钢3号高炉稳定操作技术
    4.1 原燃料质量管理
        4.1.1 提高原燃料质量,优化炉料结构
        4.1.2 严格控制入炉碱金属和锌负荷
    4.2 优化煤气流分布,确保炉况稳定
        4.2.1 宝钢3号高炉操作难点
        4.2.2 优化装料制度,保证煤气流分布合理
        4.2.3 优化操业参数,控制炉体热负荷稳定合适
        4.2.4 优化送风制度,控制适宜的鼓风动能
        4.2.5 调整效果
    4.3 精心操作,趋势管理,确保炉温稳定充沛
        4.3.1 炉温管理标准及调节手段
        4.3.2 炉温趋势管理
    4.4 优化炉渣成分
    4.5 强化设备管理,降低休风率
    4.6 宝钢3号高炉操作实绩
    4.7 小结
第5章 宝钢3号高炉炉身维护技术
    5.1 宝钢3号高炉冷却壁破损状况及原因分析
        5.1.1 冷却壁破损状况
        5.1.2 冷却壁破损的原因分析
    5.2 宝钢3号高炉冷却系统优化
        5.2.1 提高水量水压,提高冷却强度
        5.2.2 增设脱气罐,提高脱气功能
        5.2.3 优化水处理技术、改善水质
    5.3 炉身长寿维护技术
        5.3.1 安装微型冷却器
        5.3.2 硬质压入及人工造壁
        5.3.3 整体更换冷却壁
        5.3.4 破损冷却壁的及时发现和分离
    5.4 小结
第6章 宝钢3号高炉炉缸维护技术
    6.1 炉缸长寿维护操作
        6.1.1 合理炉缸冷却强度控制
        6.1.2 合理的出渣铁制度及铁口状态维护
        6.1.3 炉缸活跃性控制
    6.2 炉缸状态监控
        6.2.1 加装炉缸电偶
        6.2.2 水系统安装高精度电阻
        6.2.3 完善炉缸炉底侵蚀模型
        6.2.4 建立炉缸炉底残厚计算模型
    6.3 炉缸压浆
        6.3.1 大套下压浆
        6.3.2 铁口压浆
        6.3.3 炉缸压浆
    6.4 小结
第7章 结论
参考文献
致谢
攻读学位期间发表成果
作者简介

(7)企业产品创新能力和产品创新及工艺创新模式的关系研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 选题背景
    1.2 研究目的与意义
    1.3 相关概念的界定
    1.4 研究内容与研究方法
    1.5 研究创新点
    1.6 论文结构安排
2 文献回顾与评述
    2.1 西方文献回顾
    2.2 西方文献评述小结
    2.3 国内学者的研究现状
    2.4 国内文献评述小结
    2.5 目前有待进一步研究的方向
3 基于静态和动态双寡头博弈的均衡方法的创新模式选择模型
    3.1 理论框架
    3.2 产品创新和工艺创新的选择
    3.3 本章小结
4 基于武汉钢铁公司技术创新的案例研究
    4.1 研究方法
    4.2 研究分析与结果
5 结论与展望
    5.1 研究结论与理论贡献
    5.2 研究启示
    5.3 研究局限及展望
致谢
参考文献
附录 1 攻读学位期间发表的学术论文目录

(10)大型高炉生产过程的质量控制与改进(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景、目的和意义
        1.1.1 研究背景
        1.1.2 研究目的和意义
    1.2 国内外相关研究现状
        1.2.1 国外质量管理研究现状
        1.2.2 国内质量管理研究现状
    1.3 本文研究思路与研究内容
第二章 质量管理理论综述
    2.1 质量管理理论及其发展
        2.1.1 质量概念的发展
        2.1.2 质量管理理论的发展
    2.2 质量控制理论
        2.2.1 质量控制的概念
        2.2.2 质量控制的发展历程
        2.2.3 质量控制的方法
    2.3 质量改进理论
        2.3.1 质量改进的概念
        2.3.2 质量改进的重要意义
第三章 大型高炉的冶炼过程与质量影响因素分析
    3.1 高炉炼铁工艺流程
    3.2 高炉炼铁的冶炼原理
    3.3 高炉冶炼过程中质量影响因素分析
        3.3.1 人员对高炉冶炼质量的影响
        3.3.2 原料对高炉冶炼质量的影响
        3.3.3 设备对高炉冶炼质量的影响
        3.3.4 工艺对高炉冶炼质量的影响
        3.3.5 环境对高炉冶炼质量的影响
第四章 建立大型高炉生产过程的质量控制模型
    4.1 高炉系统生产质量控制模型的建立
    4.2 质量控制模型在武钢高炉冶炼中的应用
        4.2.1 强化人力资源管理,抓“人”的因素
        4.2.2 管理并控制好高炉原燃料及材料因素
        4.2.3 注重设备现代化,有效控制“设备”影响因素
        4.2.4 优化炼铁工艺技术、推进工艺创新
        4.2.5 改善炉前工作环境
        4.2.6 增强环保意识加强环境治理
    4.3 高炉炼铁质量控制模型的应用效果
第五章 结束语
参考文献
致谢
详细摘要

四、武钢4号高炉大修改造后的生产实践(论文参考文献)

  • [1]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
  • [2]长寿高炉炉缸炉底影响因素研究[D]. 牛群. 北京科技大学, 2020(06)
  • [3]唐钢2000m3高炉铜冷却壁应用研究[D]. 何友国. 华北理工大学, 2019(04)
  • [4]宝钢3号高炉长寿技术的研究[D]. 梁利生. 东北大学, 2012(07)
  • [5]武钢2200m3薄壁炉身高炉上下部调剂方针的演化特征研究[A]. 陈令坤,傅连春. 第九届中国钢铁年会论文集, 2013
  • [6]武钢炼铁“十一五”生产技术及装备进步[J]. 陆隆文,杨佳龙. 武钢技术, 2012(04)
  • [7]企业产品创新能力和产品创新及工艺创新模式的关系研究[D]. 曾武. 华中科技大学, 2012(07)
  • [8]武钢5号高炉炼铁技术进步[J]. 傅连春,张世爵. 武钢技术, 2011(06)
  • [9]武钢炼铁“十一五”技术装备进步[A]. 陆隆文,杨佳龙. 科技引领产业、支撑跨越发展——第六届湖北科技论坛论文集萃, 2011
  • [10]大型高炉生产过程的质量控制与改进[D]. 熊亚飞. 武汉科技大学, 2010(02)

标签:;  ;  ;  ;  ;  

武钢4号高炉大修后生产实践
下载Doc文档

猜你喜欢