一、西藏门巴地区德宗花岗质片麻岩SHRIMP锆石U-Pb年龄及地质意义(论文文献综述)
张予杰,张以春,王冬兵,苟正彬[1](2021)在《青藏高原中南部前寒武系及古生界岩石地层组成和时代特征》文中认为对青藏高原中南部北羌塘、南羌塘、冈底斯、仲巴、喜马拉雅和昌都6个地区前寒武系及古生界岩石地层的组成和时代特征进行分析,总结了117个群组级岩石地层单位的岩性组合和时代特征,梳理地层划分对比中存在的相关问题。通过调查认为,前人划定的前寒武纪基底大多不再具有典型的变质或结晶基底特征,北羌塘可能具有相对稳定的基底,下古生界包括部分奥陶系和志留系,上古生界不整合在下古生界之上,发育早泥盆世晚期地层及中—上泥盆统、上石炭统和二叠系。南羌塘地区基底性质不明,下古生界以"残块"形式出露在玛依岗日一带,上古生界在南羌塘地区西部和东部一带表现样式不同,在西部日土一带具稳定沉积特点,东部双湖一带为"基质+块体"的俯冲增生杂岩。冈底斯地区,拉萨地块(中部)和聂荣微地体具前寒武纪基底,新元古代末—寒武纪发育一套"双峰式"火山岩,奥陶系可能不整合在前奥陶系之上,奥陶纪—二叠纪均为海相(或海陆过渡相)沉积。仲巴微地体自下而上可由上震旦系—寒武系片岩构造层、奥陶系—泥盆系变质碳酸盐岩构造层、石炭系—二叠系构造层组成。喜马拉雅地区具有较稳定的前寒武系结晶基底,中奥陶世—晚二叠世均沉积一套海相地层。昌都地区可能存在前寒武系基底,下古生界仅零星出露下奥陶统和志留系,上古生界除乐平统与瓜德鲁普统之间为假整合接触外,其余均为较连续的海相沉积地层。
秦松[2](2021)在《东昆仑造山带西缘刀锋山地区晚古生代-早中生代主要岩浆事件岩石学依据》文中提出对古特提斯洋演化过程中洋陆转换过程的深入认识是准确理解冈瓦纳裂离碎片北向漂移过程中微陆块之间拼合机制的重要窗口。位于古特提斯构造域最北缘的东昆仑古特提斯洋,其俯冲-碰撞过程之间的转换过程(包括转换时限和转换机制)一直存在较大争议,极大制约了对冈瓦纳北缘微地体之间地球动力学过程的深入认识。东昆仑造山带西缘刀锋山地区处于阿尔金断裂和东昆仑的交接部位,研究程度极低,且处于衔接东昆仑、阿尔金、西昆仑的关键部位,保留了晚古生代-中生代岩浆事件和相关的沉积记录,是研究东昆仑古特提斯洋洋陆俯冲和碰撞过程的天然实验室。本文依托中央返还新疆两权价款资金项目(K16-1-LQ20)和四川省地矿局区调队科研项目((2017)02号)项目,对东昆仑刀锋山地区早二叠-早侏罗世岩浆岩和相关沉积岩开展了系统的野外地质调查、岩石学、元素地球化学、锆石U-Pb和Lu-Hf同位素等研究工作。主要取得如下研究进展:(1)通过对马尔争组下部产出的玄武岩-玄武质安山岩和上部发育的流纹岩-英安岩的锆石U-Pb测年结果显示其形成时代分别为273.1±1.1 Ma和264.8~266.6 Ma。前者属于钙碱性系列,具有富钠、高镁、Mg#、(Th/Nb)Pm和低(Nb/La)Pm,强烈富集大离子亲石元素(LILEs),亏损高场强元素(HFSEs);εHf(t)值主要变化介于+0.15~+7.40,TDMC介于822~1283 Ma之间,表明其形成于早二叠世俯冲阶段板片熔融相关的熔体交代过程。后者属钙碱性系列,具有富钠、低镁和Mg#,显示S型花岗岩特征,强烈富集LILEs,亏损HFSEs;εHf(t)主体介于-1.65~+8.29(平均为+1.85),TDMC介于764 Ma~1396 Ma之间,指示源区具有亏损地幔参与的壳幔混合特征,显示其形成于晚二叠世俯冲背景下深海沉积物(砂、泥岩)不同比例熔融与地幔楔作用的产物。(2)新发现的在刀锋山混杂带南部侵位于黄羊岭组的闪长岩脉,其锆石U-Pb年龄为258.2±1.9 Ma;具有中等SiO2,高Na2O、MgO、Mg#、Cr、Ni,低FeOT/MgO、TiO2、Th、Th/Ce,类似于赞岐质(Sanukitic)高镁安山岩/闪长岩。该闪长岩的高Sr(598.7 ppm)、Sr/Y,低Y、Yb,与俯冲板片熔体相关的埃达克岩特征一致。εHf(t)变化范围是-10.35~-8.19之间,表明其形成于晚二叠世俯冲阶段消减板片及其上覆沉积物熔融产生的熔体和地幔楔橄榄岩的反应。(3)侵位于马尔争组的岩浆岩主要包括辉绿岩和花岗质岩石。辉绿岩锆石U-Pb测年结果为206.5±4.9 Ma和226.5±2.9 Ma;元素地球化学测试结果显示其属于钙碱性系列,具有富钠、高镁、Mg#、(Th/Nb)pm,低(Nb/La)pm,强烈富集LILEs,亏损HFSEs;εHf(t)介于-6.78~-1.82之间(平均-3.51),表现出源区不同程度富集的特征,暗示其形成于晚三叠世俯冲板片部分熔融相关的熔体交代过程,其中俯冲板片富集组分(如沉积物)可能参与该熔融过程。呈大岩基产出的二长花岗岩锆石U-Pb年龄为209.5±1.5 Ma;显示高钾钙碱性系列,低镁和Mg#,具有Ⅰ型花岗岩特征,富集LILEs、亏损HFSEs。其高Lu/Hf比值指示海相沉积物很可能被俯冲过程带入并参与其形成过程;Zr/Hf比值偏离其与Zr所组成的线性序列,暗示除岩浆结晶分异之外,源区有幔源组分参与。其εHf(t)变化范围为+2.15~+8.23,TDMC介于720~1107 Ma,表现出不同程度的新生特征,也进一步支持亏损幔源组分参与其形成过程。因此该二长花岗岩可被认为形成于晚三叠世俯冲阶段俯冲的沉积物(如海相泥岩)部分熔融产生的熔体和地幔楔橄榄岩的反应。晚期呈岩株状产出的花岗质岩石包括二长花岗岩和碱长花岗岩,其锆石测年结果分别为186.6±2.5 Ma和186.1±1.8 Ma。元素地球化学分析结果显示其均属于钙碱性-高钾钙碱性系列,整体表现为高钾,低镁和Mg#,均富集LILEs和亏损HFSEs。Zr/Hf比值与Zr所组成的线性序列表明无幔源组分的参与;随Nb含量增加和Nb/Ta比值降低,Y/Ho比值呈现出增加趋势,指示与花岗质岩石分异形成的流体相关。早侏罗世花岗质岩石εHf(t)介于+1.04~+7.23,TDMC介于766~1162 Ma,与早阶段晚三叠世二长花岗岩具有极为一致的εHf(t)值。此外,早侏罗世花岗质岩石样品含有大量与晚三叠世花岗岩时代一致的锆石群(208Ma~212 Ma),可初步得出早侏罗世花岗岩是晚三叠世花岗岩或其碎屑物质在软碰撞阶段强烈挤压背景、源区无幔源岩浆参与下再次熔融的产物。(4)对昆南混杂岩带的马尔争组(P1-2m)、库孜贡苏组(K1kz)和刀锋山组(D3d)构造背景分析表明均形成于活动陆缘。碎屑锆石均呈现多峰分布:马尔争组砂质亮晶灰岩(~302 Ma,~552 Ma和~905 Ma);库孜贡苏组长石石英砂岩(~246 Ma和~446 Ma);刀锋山组含黑云母石英岩(~576 Ma,~657 Ma和~998Ma)。其中,库孜贡苏组两大峰值与东昆仑造山带两期弧岩浆作用密切相关,马尔争组和刀锋山组~576 Ma和~905-998 Ma峰值分别记录了泛非事件和罗地利亚超大陆聚合-裂解事件。最年轻的碎屑锆石表明在~246 Ma仍处于消减阶段。综上所述,本次工作在研究程度极低的关键地区,系统地开展了野外调查、岩相学、岩石地球化学、同位素年代学等研究,分析了研究区岩浆岩的空间分布、形成时限、物质来源,探讨了岩浆岩的成因机制、构造环境及其造山响应,填补了该区晚古生代-早中生代主要岩浆事件的研究空白;同时得出阿尼玛卿-昆仑古特提斯洋的北向俯冲在早二叠世(~273Ma)已经开始,持续到晚三叠世(~209Ma),碰撞可能发生在早侏罗世(~186Ma),俯冲-碰撞转换发生在晚三叠世-早侏罗世(209-186Ma),其间经历了大洋俯冲阶段到增生楔-增生楔软碰撞阶段的洋-陆转换过程,为细化阿尼玛卿-昆仑古特提斯洋的俯冲和碰撞过程进行了重要时限和机制约束。
李浩然[3](2021)在《青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究》文中进行了进一步梳理柴达木周缘位于青藏高原的北缘,中央造山带重要的组成部分,包括东昆仑和祁连两大造山带。其独特的大地构造位置、复杂的构造环境、频繁的岩浆活动及不同程度的变质作用,记录了区域构造-岩浆-成矿作用的造山旋回过程,不仅造就了区内异常丰富的矿产资源,同时也是揭秘大陆岩石圈时空结构及不同圈层相互作用和显生宙地球动力学演化的理想试验地。论文选取了柴达木周缘近年来新发现的产在陆相火山岩区的具有代表性的6个典型矿床为研究对象,强调野外实际调研地质现象,结合详细的室内观察分析,系统的总结矿床地质特征、成矿条件,准确厘定矿床成因类型。对矿区内的火山岩及中酸性侵入岩开展岩石学、锆石LA-ICP-MS、全岩地球化学及锆石Hf同位素的综合研究,结合矿相学、流体包裹体、H-O同位素等一系列实验方法,取得了以下主要成果:柴北缘造山带内牦牛山组酸性火山岩结晶年龄为407Ma、378Ma、377Ma,结合该时期前人的研究资料,系统的总结了加里东期-华力西期陆陆碰撞-后碰撞的动力学演化事件,~410Ma的时间点为重要的同碰撞到后碰撞的构造体制转换时间,此时柴北缘地区发生板片断离事件,整体从挤压造山环境转为伸展环境,标志着正式进入后碰撞伸展阶段,随着地壳持续增厚在~380Ma发生岩石圈拆沉,大量的幔源岩浆上涌。本文获取的柴北缘晚华力西期-印支期中酸性侵入岩结晶年龄为240Ma、232Ma、230Ma,加里东期造山运动结束后,柴达木地块已经与祁连地块拼贴完成,本文研究认为该时期并未裂解出新的洋盆,而是与东昆仑造山带一同受巴颜喀拉洋北向俯冲作用影响。通过对东昆仑造山带中生代火山岩详细研究发现具有明显岩性差异、时代差异和构造背景差异的两期火山岩事件,而非前人认为的均为鄂拉山组,基于上述地质事实,本文建议将鄂拉山组解体,并建立夏河组,与传统的鄂拉山组火山岩相区分。夏河组成岩年龄为印支早期,地球化学和锆石Hf同位素特征显示其源区来源于俯冲板片脱水交代形成的富集地幔与熔融的镁铁质地壳形成的混合岩浆,形成于巴颜喀拉洋北向俯冲于柴达木陆块之下的活动大陆边缘背景。传统的鄂拉山组火山岩,其成岩年龄为印支晚期,源区具有强烈壳-幔混合岩浆特征,形成于陆陆碰撞之后的后碰撞伸展-强烈的岩石圈拆沉背景。由此可见,柴周缘显生宙存在三期陆相火山岩,而非前人认为的两期。本文对选取的六个典型矿床进行了细致的野外和室内工作,研究认为:柴北缘达达肯乌拉山多金属矿为热液脉型矿床,非VMS型矿床。孔雀沟-哈布其格钼(铜)多金属矿床具有典型的面型蚀变特征为斑岩型矿床,虽然目前研究程度较低,但是展现出巨大的找矿潜力。东昆仑造山带夏河铜多金属矿为高硫化型浅成低温热液矿床,鄂拉山口铅锌矿、哈日扎银多金属矿和那更康切尔银多金属矿为浅成中低温热液脉矿床。其中夏河,鄂拉山口和哈日扎均非前人认为的斑岩型矿床。鄂拉山口铅锌矿床流体包裹体主要有气液两相和含CO2三相,属于H2O-Na Cl-CO2体系,H-O同位素显示成矿流体来源于岩浆水和大气水的混合,硫同位素显示具有多元性,受酸性岩浆和地层共同影响。夏河铜多金属矿床以气液两相和含CO2三相为主,H-O同位素显示成矿流体具有深源性,演化到晚期大量大气降水参与成矿,硫同位素来源于中酸性岩浆活动。哈日扎和那更康切尔矿床流体包裹体以CO2三相和气液两相为主,C-H-O-S-Pb同位素显示成矿流体具有幔源初生水特征,铅来源于幔源和地壳的混合,硫同位素显示具有幔源硫的特征,此外首次在那更康切尔矿区发现碲化物的存在,种种迹象体现了深部地质作用对银多金属矿床的控制作用。在以上研究的基础之上,总结区域成矿作用与地球动力学背景的耦合关系,东昆仑造山带在晚华力西期-印支期巴颜喀拉洋北向俯冲的过程中,将大量的水和金属硫、亲流体的大离子亲石元素(LILE)、卤素以及其他组分输送到上地幔中,为形成富含Ag、Au成矿物质的幔源C-H-O流体相提供了基础。与此同时形成了一系列区域性大断裂、大型剪切带及次一级的褶皱和断裂控矿构造,该时期幔源岩浆底侵导致下地壳部分熔融,形成混合岩浆沿断裂上侵携带了成矿物质,在上升过程中物理化学条件发生变化,导致金属硫化物沉积形成如本文鄂拉山口和夏河矿床。演化到印支晚期洋盆闭合之后,区域经历强烈的构造体制转换,储存在上地幔的大量富含Ag、Au等金属元素的幔源C-H-O流体沿深大断裂运移至浅部地壳,成矿流体运移的过程中,也同样不断萃取围岩的成矿元素,在运移至浅部时,在大气降水的参与下,最终沉淀形成银多金属矿床。明确了产在柴周缘陆相火山岩区的矿床的找矿方向,既寻找形成深度较浅的矿床类型,如斑岩型矿床,浅成低温热液矿床和部分热液脉型矿床。由于中生代柴北缘远离俯冲带,因此东昆仑造山带成矿作用明显强于柴北缘地区。由于陆相火山岩区剥蚀深度较浅,本文认为陆相火山岩区是接下寻找此类Ag多金属矿床的重点靶区。本文以新的视角,内容涵盖丰富,将理论研究和实例分析相结合,提出了部分前瞻性探索和实践经验的总结规律。进一步厘清了柴达木盆地周缘成矿作用与地球动力学的耦合关系提供了一定的参考。在观点、方法、阐述过程及结论方面不足之处,承蒙同行专家批评指正。
张鑫全,张振利,王金贵,王硕,杨鑫朋,专少鹏,侯德华,张泽国,张立国,程洲[4](2020)在《对雅鲁藏布江结合带形成演化的再探讨》文中研究表明通过1∶5万区域地质调查和收集相关资料的综合研究,本文对雅鲁藏布江结合带的形成演化作了进一步的探讨。雅鲁藏布江特提斯洋具有弧后扩张洋盆的性质,在早三叠世至中三叠世中期洋盆初步形成,中三叠世晚期至晚三叠世洋盆全面形成,从早侏罗世至晚白垩世洋盆逐步萎缩,到古新世至始新世关闭。南带的蛇绿岩主要为洋中脊扩张型(MORB型),形成于中三叠世晚期至晚三叠世。北带的蛇绿岩主要为与洋内俯冲相关的俯冲带上盘型(SSZ型),形成于早中侏罗世。带内侏罗纪至白垩纪其他岩浆岩主要为前弧玄武岩类(FAB型)。显示雅鲁藏布江特提斯洋从早侏罗世开始发生了洋内俯冲,并同步向北向冈底斯带之下主动俯冲消减和向南向喜马拉雅地块之下被动俯冲消减,持续发展到晚白垩世,在古新世至始新世俯冲碰撞消亡转化为结合带。
耿全如,张璋,彭智敏,关俊雷,丛峰[5](2020)在《西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用》文中认为西藏中部的雄梅-班戈-青龙乡-桑雄一带发育一条连续的花岗岩带,属于班公湖-怒江成矿带的中段.该带在近年来已发现雄梅铜矿、苦嘎铜矿、日阿铜矿和青龙乡铅锌矿等中小型矿床和矿点,但仍未有更大的找矿突破.根据全面的资料收集和野外调查,对花岗岩体的地球化学性质、物质来源和成矿地质条件进行了研究.该带花岗岩主要可分为140~125 Ma、120~110 Ma、94~72 Ma三个侵入期次以及一些新生代岩体,其中120~110 Ma为岩浆活动大爆发阶段.本区西段的早白垩世的舍索、雄梅、苦嘎花岗岩体和晚白垩世的雪如、桑心日等岩体已发现显着的铜金铁等矿化,但它们的成岩成矿物质来源和围岩性质等方面与超大型斑岩铜矿有差距,可形成类似于青草山铜矿的中-大型斑岩铜金矿床或矽卡岩型矿床,有进一步找矿的潜力.沿班戈-青龙乡-桑雄连续分布的早白垩世花岗岩带与热液型、矽卡岩型铁铅锌多金属成矿作用关系密切.
于云鹏[6](2020)在《藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义》文中指出大洋板块的俯冲作用会导致弧岩浆作用的形成,对岩浆弧的识别与研究是还原古大洋演化过程的基础。松多古特提斯缝合带位于拉萨地块内部,代表了松多古特提斯洋俯冲闭合的遗迹,然而大洋的俯冲闭合过程仍不明确。本文选择松多地区二叠纪-侏罗纪岩浆岩作为研究对象,通过野外岩石学、锆石U-Pb年代学及Lu-Hf同位素、全岩地球化学及全岩Sr-Nd同位素的研究,结合区域内的数据资料,探讨中二叠世-早侏罗世时期岩浆岩的岩石成因及壳-幔相互作用,探索多期次岩浆作用与青藏高原多洋盆演化之间的联系,最终建立松多地区构造-岩浆演化模型。通过对唐加-松多地区岩浆岩进行LA-ICP-MS锆石U-Pb测年研究,共识别出4期弧岩浆作用:中二叠世闪长岩锆石U-Pb年龄为263±3 Ma,中三叠世花岗岩锆石U-Pb年龄为238±1 Ma,晚三叠世花岗闪长岩锆石U-Pb年龄为208201 Ma,早侏罗世花岗闪长岩锆石U-Pb年龄为201194 Ma。结合前人报道的岩浆岩年代学资料,将松多地区岩浆弧的形成时间划分为以下4个期次:中二叠世(约263 Ma)、中三叠世(约238 Ma)、晚三叠世早期(约237221Ma)、晚三叠世末期-早侏罗世(约213190 Ma)。中二叠世岩浆岩出露于松多岩组内部,较高的MgO含量和Mg#指示其岩石类型为高镁闪长岩,对岩石类型进一步划分为赞岐岩型闪长岩。对闪长岩全岩地球化学及全岩Sr-Nd同位素的研究表明岩浆主要来自于受俯冲洋壳熔体交代的亏损地幔源区。结合区域内榴辉岩及洋岛岩石资料,本文认为松多中二叠世岩浆岩可能形成于松多古特提斯洋北向初始俯冲的构造环境中,有可能代表了松多古特提斯洋中二叠世时期的岩浆弧。中三叠世岩浆岩侵位于松多岩组变形地层中,岩相学及全岩地球化学研究表明岩石为过铝质花岗岩,主要来自于成熟地壳物质的部分熔融。锆石Lu-Hf同位素和全岩Sr-Nd同位素指示中三叠世花岗岩的岩浆源区存在地幔物质成分的贡献,岩浆主要来源于受地幔物质底侵交代的古老下地壳。结合松多岩组构造变形及松多榴辉岩年代学资料,提出中三叠世岩浆岩可能形成于松多古特提斯洋俯冲向碰撞转化的构造环境中。晚三叠世早期岩浆岩出露于中拉萨地块达布拉地区与南拉萨地块昌果地区,地球化学特征指示达布拉岩体为强过铝质花岗岩,昌果火山岩具有弧岩浆岩特征。结合松多地区榴辉岩的变质年龄,本文认为达布拉岩体可能形成于中、南拉萨地块碰撞后松多古特提斯洋板片断离的构造环境中;昌果火山岩形成于新特提斯洋初始俯冲的构造环境中。晚三叠世末期-早侏罗世岩浆岩广泛出露于松多地区,岩石学及岩相学研究表明晚三叠世末期-早侏罗世时期岩浆岩发生岩浆混合作用,全岩地球化学及全岩Sr-Nd同位素指示岩浆来源于古老下地壳物质的部分熔融,且伴随有受俯冲板片流体交代的影响的幔源物质加入。结合拉萨地块内同期岩浆岩资料,认为晚三叠世末期-早侏罗世岩浆岩形成于新特提斯洋俯冲的构造环境中。根据松多地区二叠纪-侏罗纪岩浆作用的研究,结合区域内高压变质岩、蛇绿岩、地层学及古地磁的资料,本文建立了研究区松多古特提斯洋在中二叠世初始俯冲、中三叠世洋-陆转化的模型,晚三叠世早期松多地区受到新特提斯洋初始俯冲影响,并于晚三叠世末期-早侏罗世时期受到新特提斯洋的持续俯冲形成大规模弧岩浆事件。
闫浩瑜[7](2020)在《青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程》文中指出印度和欧亚大陆自新生代以来的持续挤压碰撞导致了世界上最年轻和最壮观的青藏高原陆-陆碰撞造山带的形成,且这个造山带的形成和演化一直是国际地球科学领域研究最热的问题之一。拉萨地体位于欧亚大陆的最南端,是欧亚大陆与印度大陆距离最近的构造单元,也是受陆-陆碰撞影响最大的地体。在拉萨地体中,尤其是南拉萨分布的晚白垩世-中新世的冈底斯花岗岩基和古新世-始新世的林子宗火山岩一直是研究的热点和焦点。因为这些岩浆岩记录了印度-欧亚大陆碰撞前-中-后的复杂过程,所以它们是揭示新特提斯大洋板片俯冲消减、印度-欧亚大陆碰撞以及高原隆升机制等过程的关键。然而,迄今为止对于南拉萨出露的晚白垩世-中新世的冈底斯花岗质岩石和古新世-始新世的林子宗火山岩的成因机制及深部动力学过程仍然存在较多的争议,阻碍了我们对新特提斯大洋板片俯冲消减过程,以及随后持续的陆-陆挤压碰撞过程形成的岩浆岩的物质来源及岩浆过程的理解。本文结合野外地质和室内整理的资料,选择出露在南拉萨碰撞前的南木林晚白垩世闪长岩、碰撞后的日喀则中新世埃达克质岩墙和碰撞过程中的林周盆地古新世典中组火山岩作为研究对象。通过详细的岩石学、锆石U-Pb年代学、全岩主-微量和同位素地球化学(Sr-Nd-Mo),并结合已发表的数据,揭示了这些碰撞前-中-后形成的不同类型岩浆岩的岩石成因和深部动力学过程,且取得了如下进展:(1)碰撞前的南木林闪长岩形成时代为94.3~92.3 Ma,这些年龄结果与前人在该地区报道的辉长岩-辉长闪长岩锆石U-Pb年龄是一致的。南木林晚白垩世辉长岩、辉长闪长岩和闪长岩是正常的弧岩浆岩,具有几乎一致的Sr-Nd同位素组成,区域上部分同期的埃达克质岩石也具有相对一致的Sr-Nd-Hf同位素组成。本文通过元素和同位素分析认为这些(辉长岩-闪长岩和埃达克质岩石)同期但不同类型的岩浆岩是来自混杂岩在弧下地幔楔区的不同深度下熔融形成,而非来自交代地幔楔熔融形成。混杂岩(包含大洋玄武岩、大洋沉积物以及地幔楔橄榄岩组分)首先在俯冲隧道即俯冲板片和地幔楔接触界面进行均匀的物理混合,然后部分以底辟的形式上升到浅的地幔楔区经熔融形成不具有埃达克质岩石地球化学特征的南木林晚白垩世辉长岩-闪长岩,部分被运输到较深的俯冲隧道熔融形成埃达克质岩石。晚白垩世这些不同类型弧岩浆岩的形成是由于新特提斯大洋板片向南回撤导致,在大洋板片回撤的过程中上涌的热的软流圈地幔以及热的角流为混杂岩提供热源促使其熔融。(2)碰撞后的日喀则岩墙形成时代为中新世,其锆石U-Pb年龄为14.8~10.3 Ma,具有富集的Sr-Nd同位素组成,并显示典型的埃达克质岩石地球化学特征,主要为增厚且年轻的拉萨镁铁质下地壳熔融的产物。根据Na2O、K2O含量以及Na2O/K2O比值,这些岩墙可以划分为两种类型:富钾的岩墙和富钠的岩墙。两类岩墙Na2O、K2O含量的不同和富集的Sr-Nd同位素组成说明其形成的过程中有古老的印度大陆地壳的物质不同程度参与。此外,富钠的岩墙显示高的MgO、Cr、Ni和Na2O含量,指示软流圈地幔物质在其形成过程中也参与它们的形成。综合文献资料和本文研究,指示了壳-幔物质不同程度的参与导致区域上晚渐新世-中新世埃达克质岩石具有不同的地球化学特征。根据后碰撞岩浆岩受南北向的断裂控制以及地球物理等证据,本文认为南拉萨亚地体出露的晚渐新世-中新世岩浆岩的形成是由印度大陆板片撕裂所造成的(3)碰撞过程中的林周盆地林子宗火山岩系列中典中组火山岩形成时代为62.1~60.9 Ma,与前人研究结果一致。目前对于林子宗火山岩典中组安山岩存在不同的岩石成因认识,以Mo et al.(2007,2008)的观点最具代表性,他们认为典中组火山岩来源于新特提斯洋壳及其上覆的远洋沉积物在角闪岩相的熔融形成。但是我们的元素和同位素(Sr-Nd-Mo)的证据却指示该套火山岩很可能来自于混杂岩的底辟熔融。混杂岩在俯冲隧道即俯冲板片和地幔楔界面混合均匀,然后以底辟的形式上升到较浅的地幔楔区,在热的软流圈地幔和地幔楔角流的作用下发生部分熔融形成典中组安山岩,该动力学过程受控于新特提斯大洋板片在古新世期间向南的回转或回撤。(4)这三期岩浆岩形成的深部动力学过程是不同的,记录了洋-陆俯冲到陆-陆碰撞造山的复杂过程,在这些岩浆岩形成的过程中不同的物质以及不同的岩浆过程参与它们的形成。
张超[8](2020)在《大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景》文中指出巴林左旗-扎鲁特旗地区位于内蒙古自治区东部,属于大兴安岭南段,晚中生代岩浆活动频繁,构成贯穿东北及邻区的北东向岩浆活动带的一部分。目前关于大兴安岭地区中生代的构造演化还存在争议,主要是蒙古-鄂霍茨克洋构造体系和古太平洋构造体系对大兴安岭地区影响的时空范围没有统一的认识。然而,研究区与蒙古-鄂霍茨克缝合带和古太平洋俯冲带皆相距较远,是研究古太平洋构造体系和蒙古-鄂霍茨克构造体系远程效应转换的理想区域。因此本文对研究区晚中生代岩浆岩进行详细的岩石学、岩石地球化学、年代学和锆石Hf同位素研究,探讨巴林左旗-扎鲁特旗地区晚中生代岩浆岩的年代学格架、时空分布、岩石成因及构造背景,结合东北地区盆地演化、断裂活动以及晚中生代岩浆岩的时空分布,揭示了大兴安岭南段晚中生代构造-岩浆演化历史。本文以“时代+岩性”的划分方式对火山岩进行年代划分,结合研究区内的侵入岩锆石U-Pb年龄及已发表的测年数据,可将大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆活动划分为三期:晚侏罗世(峰期为154Ma)、早白垩世早期(峰期为140Ma、130Ma)和早白垩世晚期(峰期为125Ma)。而且晚侏罗世与早白垩世之间岩浆活动存在短暂的间断(或变弱),同时早白垩世岩浆活动的强度显着增强。晚侏罗世侵入岩包括正长花岗岩、二长花岗岩、石英二长岩和花岗闪长岩,以及少量花岗斑岩,其中花岗闪长岩为I型花岗岩,石英二长岩和花岗斑岩为A型花岗岩,侵入岩的锆石εHf(t)值介于3.111.6之间,TDM2年龄值为586Ma1369Ma。同期酸性火山岩是由流纹岩、流纹质晶屑凝灰岩组成,其中新民组流纹质晶屑凝灰岩(416TW16,164Ma)具有S型花岗岩特征,流纹岩(16TW02,162Ma)属于高分异I型流纹岩,而其它酸性火山岩均属于A型流纹岩,火山岩的锆石εHf(t)值介于-0.712.1之间,TDM2年龄值为5491714Ma。以上特征表明岩浆岩的原始岩浆应为新生下地壳部分熔融所形成。自额尔古纳地块向南到兴安地块北部、大兴安岭中段,早-中侏罗世钙碱性系列岩石的成岩年龄和与俯冲作用有关的成矿年龄逐渐变小,表明早侏罗世岩浆作用与蒙古-鄂霍茨克大洋板块东南向俯冲所形成的活动大陆边缘环境有关。中侏罗世S型白云母二长花岗岩与C型埃达克质岩石的发现,以及同期的变质事件和翼北-辽西地区的逆冲推覆构造事件,与蒙古-鄂霍茨克洋西部(东经120°以西)―剪刀‖式碰撞闭合有关。晚侏罗世时期大兴安岭南段岩浆岩在构造判别图解中均落入后碰撞花岗岩中,早期以I型花岗岩、高分异I型流纹岩和具有S型花岗岩特征的流纹质晶屑凝灰岩,中晚期为A型花岗岩/流纹岩,暗示晚侏罗世早期岩浆岩形成于地壳坍塌起始阶段的加厚背景下,处于挤压向伸展转换的阶段,晚侏罗世中晚期进入全面伸展阶段的拉张环境,表明大兴安岭南段岩浆岩形成于蒙古-鄂霍茨克洋东部(东经120°以东)南向俯冲过程中,俯冲板片后撤形成的弧后伸展环境。早白垩世早期侵入岩的岩石组合包括正长花岗岩、二长花岗岩、花岗闪长岩、石英闪长岩、闪长岩和石英二长斑岩。DRT和BBS二长花岗岩属于I型花岗岩,锆石εHf(t)值分别为-1.63.1、-11.72.6,TDM2年龄值分别为918Ma1776Ma、1385Ma2678Ma,说明岩浆应起源于新增生下部陆壳的部分熔融。花岗闪长岩和石英二长斑岩为埃达克质岩石,Mg#值和Mg O含量较低,锆石εHf(t)值分别为-2.35.8、3.08.3,TDM2年龄值分别为565900Ma、868Ma1355Ma,表明岩浆起源于地壳加厚过程中下地壳部分熔融的环境中。同期中-中酸性火山岩属于钙碱性系列,具有弧火山岩的特征,锆石εHf(t)值介于-11.613.0之间,是遭受俯冲流体或熔体交代的岩石圈地幔部分熔融的产物,岩浆上升的过程中有古老陆壳物质混染,形成于活动大陆边缘构造环境中。早白垩世早期岩浆岩中存在古老的捕获锆石以及负εHf(t)值,说明岩浆在演化过程中有少量古老地壳物质混染,大兴安岭中南部地区古老地壳物质的存在进一步证明了这一观点。大兴安岭南段早白垩世岩浆的Sr-Nd-Pb同位素特征暗示了地幔源区遭受俯冲流体交代,与区域上同期发育的构造事件共同表明大兴安岭南段早白垩世早期岩浆岩的形成与蒙古-鄂霍茨克洋板块的平板俯冲作用有关。早白垩世晚期侵入岩包括碱长花岗岩、正长花岗岩、花岗斑岩,该期侵入岩属于A型花岗岩和高分异I型花岗岩,同期酸性火山岩是由流纹岩、流纹质晶屑凝灰岩组成,具有A型流纹岩的特征,锆石εHf(t)值分别为-4.68.6和-0.110.2,TDM2年龄值分别为842Ma2035Ma、692Ma1634Ma,说明原始岩浆应起源于新增生下部陆壳的部分熔融。以上特征共同揭示了区域性伸展环境的存在,这也得到了区域上广泛发育的A型花岗岩、变质核杂岩和裂谷盆地的支持。结合大兴安岭南段早白垩世晚期的峰值年龄与松辽盆地及以东的地区岩浆活动的峰值年龄有明显的差异,该期岩浆事件在大兴安岭地区呈现出由南向北逐渐变新的演化规律,这与松辽盆地及以东地区由东向西逐渐年轻的变化规律有所区别,结合地球物理资料,表明大兴安岭地区早白垩世晚期岩浆岩的形成主要与蒙古-鄂霍茨克大洋板块坍塌后软流圈大规模上涌和古太平洋板块向欧亚大陆下俯冲有关,研究区早白垩世晚期(125Ma)的岩浆活动主要与后者相联系。综上所述,本文初步总结了蒙古-鄂霍茨克洋南向俯冲的时空变化过程:晚二叠世-三叠世时期,蒙古-鄂霍茨克洋东南向俯冲使兴安地块北部与额尔古纳地块形成活动大陆边缘弧;晚三叠世-中侏罗世,蒙古-鄂霍茨克洋自西向东呈―剪刀‖式闭合,俯冲洋壳的影响范围持续向东南迁移;中侏罗世晚期影响到大兴安岭南段;中侏罗世晚期-晚侏罗世,蒙古-鄂霍茨克洋西侧完成闭合,俯冲带沿缝合带向北东方向迁移过程中俯冲板片随之后撤,导致大兴安岭和华北地台北缘形成弧后伸展环境;晚侏罗世-早白垩世早期,蒙古-鄂霍茨克洋的快速闭合驱动大洋板片向南发生平板俯冲,俯冲洋壳到达大兴安岭南段;早白垩世晚期,蒙古-鄂霍茨克洋完成最终闭合后,俯冲洋壳由南至北逐渐坍塌,使大兴安岭与华北板块北缘地区处于伸展背景。
纪政[9](2020)在《海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究》文中进行了进一步梳理本论文对中国东北海拉尔盆地及其毗邻的蒙古塔木察格盆地中生代火山岩进行了系统的岩石学、锆石U-Pb年代学、全岩地球化学、全岩Sr-Nd同位素和锆石Hf同位素研究,建立了海拉尔-塔木察格盆地中生代火山-沉积地层的精确年代地层格架,查明了盆地中生代火山岩的岩石成因和构造背景,揭示了环太平洋构造体系和蒙古-鄂霍茨克构造体系对中国东北地区叠加改造的地球动力学机制。根据地震反射剖面、岩石组合、陆相古生物化石组合以及区域地层对比,海拉尔-塔木察格盆地中生代火山-沉积地层传统上自下而上被划分为塔木兰沟组、铜钵庙组和南屯组,但其形成时代缺乏高精度同位素年代学的制约。本文对海拉尔-塔木察格盆地32口钻井中的中生代火山岩岩心样品进行了系统的LA-ICP-MS锆石U-Pb定年,限定了中生代火山-沉积地层的形成时代,建立了精确的年代地层格架:塔木兰沟组形成于中侏罗世卡洛夫期-晚侏罗世提塘期(166145 Ma);铜钵庙组形成于早白垩世贝里阿斯期-瓦兰今早期(142136 Ma);南屯组一段形成于早白垩世瓦兰今晚期-阿普特早期(135120 Ma);南屯组二段形成于早白垩世阿普特晚期-阿布尔早期(119111 Ma)。本文在海拉尔-塔木察格盆地中识别出了多种不同类型的中生代火山岩,包括高钾埃达克质火山岩、低钾埃达克质火山岩、富铌玄武安山岩、高硅火山岩、高镁埃达克质火山岩,它们的形成与古太平洋板块的俯冲和蒙古-鄂霍茨克洋的闭合密切相关。中侏罗世高钾埃达克质岩石由加厚的石榴角闪岩相大陆下地壳发生脱水熔融而形成,为蒙古-鄂霍茨克洋闭合的产物。晚侏罗世早期低钾埃达克质火山岩来源于古太平洋板块平板俯冲过程中榴辉岩相洋壳的含水熔融,产生的熔体在快速上升穿越较薄的地幔楔时与橄榄岩发生非常有限的反应。晚侏罗世晚期富铌玄武安山岩源自受俯冲板片熔体交代的含金云母石榴石相二辉橄榄岩地幔楔低程度的部分熔融(<2%),为古太平洋板块回卷的产物。早白垩世晚期高镁埃达克质火山岩为拆沉大陆下地壳部分熔融所产生的初始埃达克质岩浆在上升过程中与周围地幔橄榄岩发生反应的产物;晚侏罗世-早白垩世高硅火山岩存在两种成因类型,其中I型高硅火山岩起源于年轻的含云母富钾玄武质下地壳的部分熔融,A型高硅火山岩来源于曾经历脱水却并不亏损熔体的富钾中基性中-下地壳的部分熔融。此外,A型高硅火山岩主要形成于晚侏罗世晚期和早白垩世晚期,分别对应于古太平洋板块的回卷和岩石圈的拆沉。在上述研究基础上,本文结合前人发表的资料,全面阐释了东北地区中生代岩浆活动的时空分布规律,构建了环太平洋构造体系和蒙古-鄂霍茨克构造体系叠加改造的地球动力学过程。侏罗纪期间古太平洋板块的平板俯冲造成东北地区岩浆活动向陆内迁移,而靠近海沟的松辽盆地和吉黑东部于晚侏世-早白垩世早期逐渐进入岩浆活动的间歇期。受蒙古-鄂霍茨克洋闭合的影响,海拉尔-塔木察格盆地和大兴安岭地区中侏罗世经历了显着的地壳增厚。当古太平洋板块的平板部分俯冲到具有较厚岩石圈的海拉尔-塔木察格盆地和大兴安岭地区之下时,由于板片整体俯冲深度的增加导致洋壳充分发生榴辉岩化,俯冲板片不再稳定开始发生回卷。晚侏罗世晚期-早白垩世早期古太平洋板片回卷速度较慢,所引起的软流地幔物质上涌的规模和速度较小,且影响范围局限于俯冲板片前缘及其附近。在古太平洋板块持续回卷的过程中,松辽盆地和吉黑东部的岩浆活动相继复苏,形成东北地区向海沟(东南向)变年轻的早白垩世岩浆活动迁移规律。同时,随着下沉的古太平洋板块逐渐在地幔过渡带滞留脱水,引发东北地区岩石圈的拆沉和早白垩世岩浆活动的峰期自西北向东南迁移。
万云鹏[10](2020)在《西藏贡嘎地区晚白垩世花岗岩类的地球化学和岩石成因》文中指出晚白垩世是南部拉萨地块大陆弧岩浆作用发展的重要时期,也是新特提斯洋俯冲消减的重要阶段。本文对南部拉萨地块贡嘎地区晚白垩世花岗岩类进行了系统的岩石岩、年代学和地球化学研究,确定了岩体侵入时代,探讨了岩石成因、源区性质和构造环境,为晚白垩世南部拉萨地块的构造-岩浆演化提供新证据。研究区出露的岩体中含有大量暗色微粒包体。寄主岩为石英二长岩-花岗闪长岩,暗色包体为二长岩。锆石U-Pb定年结果显示,寄主岩和包体的侵入年代皆为晚白垩世(95.797.0 Ma),是同期岩浆作用产物。锆石亏损轻稀土(LREE)元素、富集重稀土(HREE)元素,具有Eu负异常和显着的Ce正异常,以及低的Pb含量、高的Th/Pb和(Nb/Pb)N比值,显示I型花岗岩类特征。综合邻区同期已发表的文献数据,南部拉萨地块晚白垩世花岗岩类锆石Hf同位素大多显示高且正的εHf(t)值(+9.4+15.2),为亏损源区特征;地幔模式年龄和地壳模式年龄比较年轻,指示源区为新生地壳物质。全岩主量元素方面,寄主岩总体富碱富钾,属于高钾钙碱性岩石系列,A/CNK=0.920.98,属于准铝质-弱过铝质岩石;二长质包体总体富碱,在钙碱性-高钾钙碱性-钾玄质岩石系列中皆有分布,A/CNK=0.790.85,属于准铝质岩石。全岩微量元素方面,寄主岩和包体皆富集轻稀土元素、亏损重稀土元素,无明显的Eu负异常(δEu=0.591.00),富集大离子亲石元素,亏损高场强元素。结合二者较高的Sr含量、较低的Y和Yb含量,它们显示了埃达克岩性质。结合本文岩石样品的研究和已发表的相关成果,本文认为,贡嘎地区晚白垩世花岗岩类,来源于新特提斯洋壳俯冲过程中,增厚的新生镁铁质下地壳的部分熔融。晚白垩世新特提斯洋壳向欧亚大陆之下俯冲时,俯冲板片脱水交代上覆地幔楔,引发其部分熔融产生玄武质岩浆,玄武质岩浆底侵至大陆地壳底部带来大量热量,使下地壳部分熔融形成花岗质岩浆,并随后发生壳幔岩浆混合作用。同时,在新特提斯洋俯冲过程中,岩浆底侵作用及其诱发的壳幔岩浆混合作用,是导致青藏高原陆壳增厚的重要途径。
二、西藏门巴地区德宗花岗质片麻岩SHRIMP锆石U-Pb年龄及地质意义(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、西藏门巴地区德宗花岗质片麻岩SHRIMP锆石U-Pb年龄及地质意义(论文提纲范文)
(1)青藏高原中南部前寒武系及古生界岩石地层组成和时代特征(论文提纲范文)
1 前寒武系 |
1.1 羌塘—昌都地区 |
1.2 冈底斯地区 |
1.2.1 聂荣岩群 |
1.2.2 念青唐古拉岩群和林芝岩群 |
1.2.3 松多岩群 |
1.2.4 德玛拉岩群 |
1.3 喜马拉雅地区 |
1.3.1 南迦巴瓦岩群 |
1.3.2 聂拉木岩群 |
1.3.3 拉轨岗日群 |
2 下古生界 |
2.1 北羌塘地区 |
2.2 南羌塘地区 |
2.3 冈底斯地区 |
2.3.1 扎欠群、波密群 |
2.3.2 他多组、扎扛组 |
2.3.3 拉塞组、雄梅组、知洼作古组、刚木桑组 |
2.3.4 桑曲组、拉久弄巴组 |
2.3.5 申扎组、德悟卡下组、扎弄俄玛组、东卡组 |
2.4 仲巴地区 |
2.5 喜马拉雅地区 |
2.5.1 肉切村(岩)群 |
2.5.2 甲村群、红山头组 |
2.5.3 石器坡组、普鲁组 |
2.6 昌都地区 |
2.6.1 酉西岩群 |
2.6.2 青泥洞组、恰拉卡组、察共组 |
3 上古生界 |
3.1 北羌塘地区 |
3.1.1 拉竹龙组、平沙沟组 |
3.1.2 日湾茶卡组、月牙湖组、瓦垄山组 |
3.1.3 冈玛错组、长蛇湖组、红山湖组 |
3.1.4 雪源河组、热觉茶卡组 |
3.2 南羌塘地区 |
3.2.1 长蛇山组 |
3.2.2 擦蒙组、展金组、曲地组、吞龙共巴组 |
3.2.3 龙格组 |
3.2.4 鲁谷组 |
3.2.5 吉普日阿群 |
3.3 冈底斯地区 |
3.3.1 达尔东组、查果罗玛组 |
3.3.2 松宗群、龙果扎普组、布玉组、贡布山组 |
3.3.3 永珠组 |
3.3.4 旁多群 |
3.3.5 拉嘎组 |
3.3.6 乌鲁龙组 |
3.3.7 昂杰组 |
3.3.8 下拉组、洛巴堆组 |
3.3.9 木纠错组 |
3.3.10 蒙拉组和列龙沟组 |
3.4 仲巴地区 |
3.4.1 先钦组、曲门夏拉组、马攸木群、纳登尔组 |
3.4.2 哲弄组、滚江浦组、普次丁组与康拓组、拉沙组 |
3.4.3 岗珠淌组、仲巴组和卡扎勒组 |
3.4.4 西兰塔组和姜叶玛组 |
3.5 喜马拉雅地区 |
3.5.1 凉泉组和波曲组 |
3.5.2 亚里组和纳兴组 |
3.5.3 基龙组 |
3.5.4 曲布组、曲布日嘎组和色龙群 |
3.5.5 雇孜组、破林浦组、比聋组、康马组、白定浦组和江浦组 |
3.6 昌都地区 |
3.6.1 嘉玉桥岩群 |
3.6.2 海通组、丁宗隆组和卓戈洞组 |
3.6.3 乌青纳组、马查拉组和骛曲组 |
3.6.4 里查组、莽错组和交嘎组 |
3.6.5 妥坝组、卡香达组和夏牙村组 |
4 讨 论 |
4.1 北羌塘地块与甜水海地块、昌都地块的地层划分对比问题 |
4.2 南羌塘“地块”古生代地层沉积相带对比等问题 |
4.3 冈底斯、喜马拉雅地区古生代地层对比等问题 |
5 结 论 |
(2)东昆仑造山带西缘刀锋山地区晚古生代-早中生代主要岩浆事件岩石学依据(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究意义 |
1.2 研究现状及拟解决的科学问题 |
1.2.1 研究现状 |
1.2.2 拟解决的科学问题 |
1.3 研究内容、研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 完成的工作量 |
1.5 创新点 |
第2章 东昆仑造山带区域地质背景 |
2.1 大地构造背景 |
2.1.1 东昆北构造带 |
2.1.2 东昆中蛇绿混杂岩带 |
2.1.3 东昆南构造带 |
2.1.4 布青山-阿尼玛卿构造混杂岩带 |
2.1.5 巴颜喀拉构造带 |
2.2 区域地层 |
2.2.1 元古代—早古生代 |
2.2.2 晚古生代 |
2.2.3 中生代 |
2.2.4 新生代 |
2.3 区域侵入岩 |
2.3.1 前寒武纪 |
2.3.2 早古生代 |
2.3.3 晚古生代-早中生代 |
2.3.4 晚中生代-新生代 |
第3章 刀锋山地区地质特征 |
3.1 大地构造位置 |
3.2 地层 |
3.2.1 东昆南构造分区 |
3.2.2 布青山-阿尼玛卿构造分区 |
3.2.3 巴颜喀拉构造分区 |
3.3 岩浆岩 |
3.3.1 火山岩 |
3.3.2 侵入岩 |
3.4 构造 |
3.4.1 构造单元特征 |
3.4.2 主断裂特征 |
第4章 岩石学特征 |
4.1 沉积岩 |
4.2 火山岩 |
4.3 侵入岩 |
第5章 刀锋山地区岩石年代学特征 |
5.1 采样位置和分析方法 |
5.2 锆石U-PB同位素定年 |
5.3 岩浆活动时限和期次划分 |
第6章 晚石炭世-早侏罗世岩石地球化学特征 |
6.1 采样位置和分析方法 |
6.2 全岩元素地球化学 |
6.3 锆石LU-HF同位素 |
第7章 岩石成因 |
7.1 岩浆期后蚀变、地壳混染与分离结晶作用影响 |
7.1.1 早二叠世基性火山岩 |
7.1.2 中-晚二叠世中酸性火山岩 |
7.1.3 晚三叠世侵入岩 |
7.1.4 早侏罗世花岗岩 |
7.2 碎屑岩沉积物再循环及沉积后蚀变影响 |
7.3 二叠纪镁铁质-长英质岩石成因 |
7.3.1 早二叠世玄武岩-安山岩 |
7.3.2 中-晚二叠世流纹岩-英安岩 |
7.3.3 晚二叠世高镁闪长玢岩 |
7.4 晚三叠世镁铁质-长英质岩石成因 |
7.4.1 辉绿岩 |
7.4.2 二长花岗岩 |
7.5 早侏罗世花岗质岩石成因 |
7.6 沉积岩物源及其构造背景 |
7.6.1 沉积岩成分分析 |
7.6.2 晚石炭世-早三叠世碎屑岩碎屑锆石年龄分析 |
第8章 东昆仑造山带晚古生代-早中生代地球动力学过程探讨 |
8.1 东昆仑古特提斯洋俯冲过程 |
8.1.1 蛇绿岩对洋盆存在和演化时限的约束 |
8.1.2 俯冲阶段岛弧岩浆记录对俯冲时限的约束 |
8.1.3 俯冲相关沉积记录对俯冲时限的约束 |
8.2 早中生代碰撞过程 |
8.3 俯冲与碰撞构造体制转换时限约束 |
8.4 大地构造演化过程简析 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
附录 |
(3)青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
绪论 |
0.1 论文选题及意义 |
0.1.1 项目依托及选题来源 |
0.1.2 选题依据及意义 |
0.2 研究区地理位置及自然条件 |
0.3 研究现状及存在问题 |
0.3.1 陆相火山岩区矿床研究现状 |
0.3.2 研究区区域地质和矿产研究工作 |
0.3.3 存在问题 |
0.4 研究思路和研究方法 |
0.4.1 研究思路 |
0.4.2 研究内容及方法 |
0.5 主要工作量 |
0.6 论文研究的主要成果和进展 |
第1章 区域地质背景 |
1.1 大地构造位置及构造分区 |
1.1.1 大地构造位置及构造分区 |
1.2 区域地层 |
1.2.1 柴周缘东昆仑造山带 |
1.2.2 柴北缘造山带 |
1.3 区域构造 |
1.3.1 昆南断裂 |
1.3.2 昆中断裂 |
1.3.3 昆北断裂 |
1.3.4 柴达木南缘隐伏断裂 |
1.3.5 柴达木北缘隐伏断裂 |
1.3.6 丁字口-乌兰断裂 |
1.3.7 宗务隆山南断裂 |
1.3.8 宗务隆-青海南山断裂 |
1.3.9 阿尔金断裂 |
1.3.10 哇洪山-温泉断裂 |
1.4 区域岩浆岩 |
1.4.1 东昆仑地区 |
1.4.2 柴北缘地区 |
第2章 柴周缘陆相火山岩及动力学演化研究 |
2.1 前加里东期柴周缘构造演化 |
2.2 加里东期-华力西期柴周缘构造演化 |
2.2.1 柴南缘东昆仑造山带加里东期强烈构造体制转化和构造迁移 |
2.2.2 柴北缘造山带加里东期-华力西期构造演化新认识 |
2.3 华力西期-印支期柴周缘构造演化 |
2.3.1 华力西-印支期东昆仑造山带安第斯型造山运动 |
2.3.2 华力西期-印支期柴北缘构造演化新认识 |
2.3.3 柴周缘中生代相邻板块时空演化关系 |
2.4 关于中生代火山岩问题 |
2.4.1 印支早期夏河组火山岩 |
2.4.2 印支晚期鄂拉山组火山岩 |
2.4.3 夏河组和鄂拉山组火山岩差异性对比 |
第3章 典型矿床研究 |
3.1 柴周缘中生代陆相火山岩区典型矿床 |
3.1.1 鄂拉山口铅锌矿床 |
3.1.2 夏河铜多金属矿床 |
3.1.3 哈日扎银铜多金属矿床 |
3.1.4 那更康切尔银矿床 |
3.2 柴周缘古生代陆相火山岩区典型矿床 |
3.2.1 达达肯乌拉山铜铅锌矿床 |
3.2.2 孔雀沟-哈布其格钼(铜)金多金属矿床 |
第4章 区域铜铅锌银多金属成矿作用及成矿规律 |
4.1 柴周缘成矿带的时空结构 |
4.2 火山岩与成矿关系解析 |
4.3 柴周缘印支早期陆相火山岩区多金属成矿作用 |
4.4 柴周缘印支晚期陆相火山岩区银多金属成矿作用 |
4.4.1 幔源C-H-O流体与银、金元素的关系 |
4.4.2 成矿深源性问题探讨 |
4.4.3 东昆仑富Ag幔源流体向地壳活化运移成矿过程分析 |
4.4.4 成矿模式 |
4.4.5 矿床的剥蚀保存条件 |
4.5 柴周缘陆相火山岩区多金属矿床成矿作用及成矿规律总结 |
第5章 结论 |
参考文献 |
附录 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(4)对雅鲁藏布江结合带形成演化的再探讨(论文提纲范文)
1 引言 |
2 相关构造单元主要特征 |
2.1 班公湖—怒江对接带 |
2.2 冈底斯—察隅地块(弧盆系) |
2.3 喜马拉雅地块 |
3 雅鲁藏布江结合带 |
3.1 南带 |
3.1.1 主要地质特征 |
3.1.2 蛇绿岩及其他岩浆岩成因分析 |
3.2 北带 |
3.2.1 主要地质特征 |
3.2.2 蛇绿岩及其他岩浆岩成因分析 |
3.3 仁布—曲松褶冲带(朗杰学增生楔) |
3.4 仲巴微地块 |
3.5 形成演化分析 |
3.5.1 前寒武纪 |
3.5.2 寒武纪至泥盆纪 |
3.5.3 石炭纪至二叠纪 |
3.5.4 三叠纪 |
3.5.5 侏罗纪至白垩纪 |
3.5.6 古近纪至第四纪 |
4 讨论 |
5 结论 |
(5)西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用(论文提纲范文)
0 引言 |
1 区域地质背景 |
1.1 BNS带 |
1.2 冈底斯岩浆弧 |
1.2.1 XBGZ带 |
1.2.2 那曲-洛隆弧前盆地 |
1.2.3 永珠蛇绿混杂带 |
1.2.4 申扎地块 |
2 花岗岩的年代学、岩石学及成矿特征 |
2.1 花岗岩的形成期次 |
2.2 班戈-青龙乡花岗岩基 |
2.3 桑雄-尤卡朗花岗岩体 |
2.4 舍索、雄梅和苦嘎早白垩世成矿花岗岩体 |
2.5 雄巴、桑心日、雪如晚白垩世成矿花岗岩体 |
2.6 BNS带中的早白垩世岩体 |
3 花岗岩类的岩石地球化学 |
3.1 常量和微量元素地球化学特征 |
3.2 全岩Sr-Nd同位素地球化学特征 |
4 构造演化与岩浆活动 |
4.1 从被动大陆边缘向活动大陆边缘的转化 |
4.2 早白垩世构造-岩浆活动 |
4.3 晚白垩世-新近纪构造-岩浆演化 |
5 成矿地质条件分析 |
5.1 XBGZ与典型斑岩铜矿初步对比 |
5.2 花岗岩成矿远景区分析 |
5.2.1 斑岩型和矽卡岩型铜金多金属成矿远景区 |
5.2.2 热液型矽卡岩型铁、铅锌多金属矿远景区 |
5.2.3 BNS带的成矿远景区 |
6 结论 |
(6)藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 概述 |
1.1.1 研究背景与选题依据 |
1.1.2 研究现状与存在问题 |
1.1.3 研究目的与研究意义 |
1.2 研究内容与技术方案 |
1.2.1 主要研究内容 |
1.2.2 技术方案 |
1.3 论文完成工作量和主要研究进展 |
1.3.1 论文完成工作量 |
1.3.2 研究进展和成果 |
第2章 区域地质概况 |
2.1 拉萨地块地质概况 |
2.2 研究区地质概况 |
2.2.1 地层系统 |
2.2.2 蛇绿混杂岩 |
2.2.3 洋岛残片 |
2.2.4 高压变质带 |
2.2.5 岩浆事件 |
2.2.6 区域构造 |
第3章 中二叠世岩浆作用 |
3.1 野外产状与岩石学特征 |
3.2 锆石U-Pb年代学与Hf同位素 |
3.2.1 测试方法 |
3.2.2 测试结果 |
3.3 全岩地球化学与Sr-Nd同位素 |
3.3.1 测试方法 |
3.3.2 测试结果 |
3.4 岩浆源区与成岩过程 |
3.4.1 蚀变作用影响 |
3.4.2 岩石成因 |
3.4.3 岩浆源区 |
3.5 本章小结 |
第4章 中三叠世岩浆作用 |
4.1 野外产状与岩石学特征 |
4.2 锆石U-Pb年代学与Hf同位素 |
4.3 全岩地球化学与Sr-Nd同位素 |
4.4 岩浆源区与成岩过程 |
4.4.1 岩石成因 |
4.4.2 岩浆源区 |
4.5 本章小结 |
第5章 晚三叠世岩浆作用 |
5.1 野外产状与岩石学特征 |
5.2 锆石U-Pb年代学与Hf同位素 |
5.3 全岩地球化学与Sr-Nd同位素 |
5.4 岩浆源区与成岩过程 |
5.4.1 岩石成因 |
5.4.2 岩浆混合作用 |
5.4.3 岩浆源区 |
5.5 本章小结 |
第6章 早侏罗世岩浆作用 |
6.1 野外产状与岩石学特征 |
6.2 锆石U-Pb年代学与Hf同位素 |
6.3 全岩地球化学 |
6.4 岩浆源区与成岩过程 |
6.4.1 岩浆成因 |
6.4.2 岩浆混合作用 |
6.4.3 构造环境 |
6.5 本章小结 |
第7章 松多地区构造-岩浆演化 |
7.1 中二叠世松多古特提斯洋初始俯冲 |
7.2 中三叠世松多古特提斯洋俯冲-碰撞转化 |
7.3 晚三叠世早期新特提斯洋初始俯冲 |
7.4 晚三叠世末期-早侏罗世新特提斯洋持续俯冲 |
7.5 松多地区构造-岩浆演化模型 |
第8章 主要结论 |
参考文献 |
作者简介及研究成果 |
致谢 |
(7)青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程(论文提纲范文)
摘要 |
ABSTRACT |
第一章 引言 |
1.1. 研究背景 |
1.2. 研究历史和现状 |
1.2.1. 冈底斯岩基 |
1.2.2. 林子宗火山岩 |
1.3. 科学问题 |
1.3.1. 南拉萨亚地体碰撞前晚白垩世岩浆岩的岩石成因问题 |
1.3.2. 南拉萨亚地体碰撞后晚渐新世-中新世埃达克质侵入体岩石成因问题 |
1.3.3. 南拉萨亚地体碰撞过程中古新世林子宗火山岩岩石成因问题 |
1.4. 研究内容与技术方案 |
1.5. 论文完成工作量 |
第二章 实验分析测试方法 |
2.1. 锆石U-Pb年代学分析测试方法 |
2.2. 全岩主-微量元素分析测试方法 |
2.3. 全岩Sr-Nd同位素分析测试方法 |
2.4. 全岩Mo同位素分析测试方法 |
第三章 地质背景 |
3.1. 区域构造格架 |
3.2. 青藏高原南拉萨亚地体 |
第四章 碰撞前南拉萨亚地体晚白垩世不同类型弧岩浆岩成因机制及深部动力学过程 |
4.1. 地质背景 |
4.1.1. 火山-沉积地层 |
4.1.2. 侵入岩 |
4.1.3. 构造单元 |
4.2. 南木林县闪长岩的岩相学、锆石U-Pb年代学和地球化学特征 |
4.2.1. 岩相学 |
4.2.2. 锆石U-Pb年代学 |
4.2.3. 岩石地球化学特征 |
4.3. 岩石成因 |
4.3.1. 地壳混染和分离结晶 |
4.3.2. 俯冲的大洋沉积物在弧岩浆岩中的印记 |
4.3.3. 混杂岩熔融形成碰撞前南木林晚白垩世的辉长岩、辉长闪长岩和闪长岩 |
4.4. 混杂岩在不同深度下熔融产生不同的弧岩浆岩 |
4.5. 深部动力学过程 |
第五章 碰撞后日喀则中新世埃达克质岩墙成因机制及深部动力学过程 |
5.1. 地质背景 |
5.1.1. 火山-沉积地层 |
5.1.2. 蛇绿岩单元 |
5.1.3. 构造单元 |
5.1.4. 侵入岩 |
5.2. 日喀则岩墙的岩相学、锆石U-Pb年代学和地球化学特征 |
5.2.1. 岩相学 |
5.2.2. 锆石U-Pb年代学 |
5.2.3. 岩石地球化学特征 |
5.3. 岩石成因 |
5.3.1. 富钾的岩墙 |
5.3.2. 富钠的岩墙 |
5.4. 壳-幔物质不同程度参与晚渐新世-中新世埃达克质岩石形成 |
5.5. 深部动力学过程 |
第六章 碰撞过程中林周盆地古新世典中组安山岩成因机制及深部动力学过程 |
6.1. 地质背景 |
6.1.1. 火山-沉积地层 |
6.1.2. 侵入岩 |
6.1.3. 构造单元 |
6.2. 林周盆地安山岩的岩相学、锆石U-Pb年代学和地球化学特征 |
6.2.1. 岩相学 |
6.2.2. 锆石U-Pb年代学 |
6.2.3. 岩石地球化学特征 |
6.3. 岩石成因 |
6.3.1. 蚀变、分离结晶以及地壳混染的影响 |
6.3.2. 判别俯冲的大洋沉积物加入 |
6.3.3. 典中组安山岩的岩石成因 |
6.3.4. 变化的Mo同位素指示了典中组安山岩是由混杂岩熔融形成 |
6.4. 深部动力学过程 |
第七章 南拉萨亚地体晚白垩世-中新世岩浆演化的深部动力学过程 |
第八章 主要结论以及下一步工作计划 |
8.1. 主要结论 |
8.2. 下一步工作计划 |
参考文献 |
附录 |
致谢 |
作者简介、在学期间发表的学术论文 |
(8)大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景与选题依据 |
1.1.1 岩浆岩的研究现状 |
1.1.2 中亚造山带东段研究现状与存在问题 |
1.1.3 大兴安岭地区晚中生代岩浆岩研究现状及存在问题 |
1.2 研究思路及拟解决的关键问题 |
1.2.1 研究思路 |
1.2.2 本文拟解决的关键问题 |
1.2.3 本论文依托的科研项目 |
1.3 论文工作量 |
第2章 区域地质概况 |
2.1 区域大地构造与构造单元划分 |
2.1.1 东北地区构造格局 |
2.1.2 大兴安岭构造单元划分 |
2.2 研究区地质概况 |
2.2.1 区域地层 |
2.2.2 区域断裂构造 |
2.2.3 区域岩浆岩 |
2.2.4 区域矿产 |
第3章 晚中生代岩浆岩地质特征与岩石学特征 |
3.1 巴林左旗-扎鲁特旗地区晚中生代侵入岩地质特征 |
3.2 巴林左旗-扎鲁特旗地区晚中生代火山岩地质特征 |
第4章 巴林左旗-扎鲁特旗地区晚中生代岩浆活动的年代学格架及其时空分布 |
4.1 分析方法 |
4.2 定年结果 |
4.2.1 研究区晚中生代侵入岩的定年结果 |
4.2.2 研究区晚中生代火山岩的定年结果 |
4.3 巴林左旗-扎鲁特旗地区晚中生代岩浆作用期次 |
4.3.1 晚侏罗世岩浆岩岩石组合及其空间分布 |
4.3.2 早白垩世早期火成岩岩石组合及空间分布 |
4.3.3 早白垩世晚期侵入岩岩石组合及空间分布 |
第5章 巴林左旗-扎鲁特旗地区晚中生代岩浆岩的地球化学和锆石Hf同位素组成 |
5.1 分析方法 |
5.1.1 主量和微量元素分析方法 |
5.1.2 锆石Hf同位素分析方法 |
5.2 晚侏罗世岩浆岩的地球化学和锆石Hf同位素 |
5.2.1 主量和微量元素 |
5.2.2 锆石Hf同位素 |
5.3 早白垩世早期岩浆岩的地球化学和锆石Hf同位素 |
5.3.1 ~140Ma岩浆岩的主量和微量元素 |
5.3.2 ~140Ma岩浆岩的锆石Hf同位素 |
5.3.3 ~130Ma岩浆岩的主量和微量元素 |
5.3.4 ~130Ma岩浆岩的锆石Hf同位素 |
5.4 早白垩世晚期岩浆岩的地球化学和锆石Hf同位素 |
5.4.1 主量和微量元素 |
5.4.2 锆石Hf同位素 |
第6章 巴林左旗-扎鲁特旗地区晚中生代岩浆岩的岩石成因 |
6.1 晚侏罗世岩浆岩的岩石成因 |
6.1.1 晚侏罗世侵入岩岩石成因 |
6.1.2 晚侏罗世火山岩岩石成因 |
6.2 早白垩世早期岩浆岩的岩石成因 |
6.2.1 ~140Ma侵入岩岩石成因 |
6.2.2 ~130Ma侵入岩岩石成因 |
6.2.3 ~140Ma火山岩岩石成因 |
6.2.4 ~130Ma火山岩岩石成因 |
6.3 早白垩世晚期岩浆岩的岩石成因 |
6.3.1 早白垩世晚期侵入岩的岩石成因 |
6.3.2 早白垩世晚期火山岩岩石成因 |
6.4 大兴安岭南段的陆壳增生 |
6.4.1 大兴安岭南段陆壳的多样性 |
6.4.2 大兴安岭南段陆壳的不均一性:锆石Hf同位素证据 |
第7章 大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代构造演化 |
7.1 晚侏罗世岩浆岩形成的构造背景 |
7.2 早白垩世早期岩浆岩形成的构造背景 |
7.3 早白垩世晚期岩浆岩形成的构造背景 |
7.4 大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代构造演化 |
7.4.1 晚侏罗世(蒙古-鄂霍茨克洋南向俯冲引起的弧后伸展) |
7.4.2 早白垩世早期(蒙古-鄂霍茨克洋板块的平板俯冲作用) |
7.4.3 早白垩世晚期(伸展环境) |
第8章 结论 |
8.1 结论 |
8.2 主要创新点 |
8.3 存在的问题与建议 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(9)海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及选题依据 |
1.2 研究现状及存在的问题 |
1.3 研究思路与拟解决的关键问题 |
1.3.1 研究思路 |
1.3.2 拟解决的关键问题 |
1.4 论文依托的科研项目与工作量 |
1.4.1 论文依托的科研项目 |
1.4.2 论文主要工作量 |
第2章 区域地质概况 |
2.1 中国东北区域构造格架 |
2.1.1 额尔古纳地块 |
2.1.2 兴安地块 |
2.1.3 松辽地块 |
2.1.4 佳木斯-兴凯地块 |
2.1.5 那丹哈达地体 |
2.2 研究区地质背景 |
2.2.1 区域构造 |
2.2.2 区域地层 |
2.2.3 区域岩浆岩 |
第3章 样品的地质与岩相学特征 |
3.1 布达特群 |
3.2 塔木兰沟组 |
3.3 铜钵庙组 |
3.4 南屯组一段 |
3.5 南屯组二段 |
第4章 海拉尔-塔木察格盆地中生代火山岩的年代学 |
4.1 分析方法 |
4.1.1 样品制备 |
4.1.2 锆石内部结构分析 |
4.1.3 LA-ICP-MS锆石U-Pb定年 |
4.2 定年结果 |
4.2.1 布达特群 |
4.2.2 塔木兰沟组 |
4.2.3 铜钵庙组 |
4.2.4 南屯组一段 |
4.2.5 南屯组二段 |
4.3 年代学讨论 |
4.3.1 海拉尔-塔木察格盆地火山-沉积地层的形成时代 |
4.3.2 东北地区中生代岩浆活动的时空分布规律 |
第5章 海拉尔-塔木察格盆地火山岩的地球化学 |
5.1 分析方法 |
5.1.1 全岩主量与微量元素分析方法 |
5.1.2 全岩Sr-Nd同位素分析方法 |
5.1.3 锆石Hf同位素分析方法 |
5.2 地球化学特征 |
5.2.1 中侏罗世高钾埃达克质火山岩 |
5.2.2 晚侏罗世早期低钾埃达克质火山岩 |
5.2.3 晚侏罗世晚期富铌玄武安山岩 |
5.2.4 晚侏罗世-早白垩世高硅火山岩 |
5.2.5 早白垩世晚期高镁埃达克质火山岩 |
5.3 岩石成因 |
5.3.1 中侏罗世高钾埃达克质火山岩 |
5.3.2 晚侏罗世早期低钾埃达克质火山岩 |
5.3.3 晚侏罗世晚期富铌玄武安山岩 |
5.3.4 晚侏罗世-早白垩世高硅火山岩 |
5.3.5 早白垩世晚期高镁埃达克质岩石 |
第6章 中生代岩浆活动的地球动力学 |
6.1 中侏罗世岩浆活动与蒙古-鄂霍茨克洋的闭合 |
6.2 晚侏罗世早期岩浆活动与古太平洋板块的平板俯冲 |
6.3 晚侏罗世晚期-早白垩世早期岩浆活动与古太平洋板块的回卷 |
6.4 早白垩世晚期岩浆活动与岩石圈的拆沉 |
第7章 结论与问题 |
7.1 主要结论 |
7.2 主要创新点 |
7.3 存在问题与建议 |
参考文献 |
附录 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(10)西藏贡嘎地区晚白垩世花岗岩类的地球化学和岩石成因(论文提纲范文)
中文摘要 |
abstract |
1 引言 |
1.1 研究背景和选题依据 |
1.2 研究现状和研究意义 |
1.3 本文研究内容 |
1.4 依托项目与完成工作量 |
1.5 本文研究成果 |
2 区域地质背景 |
2.1 青藏高原地质背景和构造单元划分 |
2.1.1 松潘-甘孜地块 |
2.1.2 羌塘地块 |
2.1.3 拉萨地块 |
2.1.4 喜马拉雅地块 |
2.2 拉萨地块地质概况 |
2.2.1 构造划分 |
2.2.2 沉积地层 |
2.2.3 岩浆作用 |
3 实验与分析方法 |
3.1 锆石U-Pb定年 |
3.2 锆石原位Hf同位素 |
3.3 主量元素 |
3.4 微量元素 |
4 岩石岩相学特征 |
4.1 样品野外地质特征 |
4.2 样品岩相学特征 |
5 实验分析结果 |
5.1 LA-ICP-MS锆石U-Pb年代学 |
5.2 锆石微量元素 |
5.3 锆石Hf同位素地球化学 |
5.4 全岩主、微量元素地球化学 |
5.4.1 主量元素 |
5.4.2 微量元素 |
6 岩石成因与源区性质 |
6.1 拉萨地块基底性质 |
6.2 南部拉萨地块晚白垩世岩浆成因与源区性质 |
6.2.1 花岗岩类成因 |
6.2.2 埃达克质岩成因 |
6.2.3 二长质包体成因 |
6.3 本章小结 |
7 南部拉萨地块晚白垩世构造-岩浆演化 |
8 结论 |
致谢 |
参考文献 |
附录 |
个人简历 |
四、西藏门巴地区德宗花岗质片麻岩SHRIMP锆石U-Pb年龄及地质意义(论文参考文献)
- [1]青藏高原中南部前寒武系及古生界岩石地层组成和时代特征[J]. 张予杰,张以春,王冬兵,苟正彬. 地质通报, 2021
- [2]东昆仑造山带西缘刀锋山地区晚古生代-早中生代主要岩浆事件岩石学依据[D]. 秦松. 成都理工大学, 2021
- [3]青海柴达木盆地周缘显生宙陆相火山岩区多金属成矿作用研究[D]. 李浩然. 吉林大学, 2021(01)
- [4]对雅鲁藏布江结合带形成演化的再探讨[J]. 张鑫全,张振利,王金贵,王硕,杨鑫朋,专少鹏,侯德华,张泽国,张立国,程洲. 中国地质, 2020(04)
- [5]西藏雄梅-班戈花岗岩带岩石地球化学与成矿作用[J]. 耿全如,张璋,彭智敏,关俊雷,丛峰. 地球科学, 2020(08)
- [6]藏南松多地区二叠纪-侏罗纪岩浆作用及构造意义[D]. 于云鹏. 吉林大学, 2020(08)
- [7]青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程[D]. 闫浩瑜. 西北大学, 2020(01)
- [8]大兴安岭南段巴林左旗-扎鲁特旗地区晚中生代岩浆作用及其构造背景[D]. 张超. 吉林大学, 2020(08)
- [9]海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究[D]. 纪政. 吉林大学, 2020(08)
- [10]西藏贡嘎地区晚白垩世花岗岩类的地球化学和岩石成因[D]. 万云鹏. 中国地质大学(北京), 2020(08)