高年级立体图形教学论文

高年级立体图形教学论文

问:关于生活中的立体图形的数学论文,1000字左右,跪求!!!!
  1. 答:你是育才的吧 我也想游做要啊~~ 但愿不要重
    唉~ 每回假期都能在知道上看着有人问问问题的人是不是育才的弊磨空
    看来育才留作业租瞎很有特点啊
问:求一篇关于高中数学立体几何的论文!急!!!
  1. 答:数学小论文
    关于“0”
    0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示察弊埋没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态败蚂和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
    “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零卜野为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
    “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
    爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字
  2. 答:关于高中数学立体几何学习的研究与实践
    如需要全文,可以再联系
问:数学圆柱圆锥的小论文1000字
  1. 答:我们曾学过长方体、正方体的表面积与体积的计算,掌握的都很清楚。今天,我又学了两个立体图形的表面积的计算,那就是圆柱与圆锥。盯凳掌握了这两个立体图形体积与表面积是如何求解的。下面,就让我们来分析一下它们的体积与面积。
    圆柱体积的计算很简单,公式是:底部面积x高。利用这个公式,就能算出圆柱的体积了。如果开始只知道底面的半径或者直径,那么就要先算出部面的面积,再来计算圆柱的体积。
    接下来,再来看圆柱的表面积。圆柱表面积的求法,就比体积要复杂一些。因为,先要求出圆柱的侧面积,再来求圆柱上底与下底的面积,再把三者相加,方能求出圆柱的表面积。虽然它的表面积求法复杂一些,但是唤肢,只要你掌握了方法与公式,今后熟能生巧,一定会做得很快。
    下面,我们来学圆锥。圆锥就是底面是一个圆,一直向上伸,直到顶部成尖尖的形状。其实,圆锥的体积也很容易求,只比圆柱的体积多出一个三分之一,就是:底面积x高?3。因为,所有圆锥,都是同底面同高度的圆柱的体积的1/3。所以先算出圆柱的和则世体积,再除以3,就是圆锥的体积了。
    圆锥的表面积书上虽然没有讲,但是我知道。
  2. 答:我们曾学过长方体、正方体的表面积与体积的计算,掌握的都很清楚。今天,我又学了两个立体图形的表面积的计算,那就是圆柱与圆锥。盯凳掌握了这两个立体图形体积与表面积是如何求解的。下面,就让我们来分析一下它们的体积与面积。
    圆柱体积的计算很简单,公式是:底部面积x高。利用这个公式,就能算出圆柱的体积了。如果开始只知道底面的半径或者直径,那么就要先算出部面的面积,再来计算圆柱的体积。
    接下来,再来看圆柱的表面积。圆柱表面积的求法,就比体积要复杂一些。因为,先要求出圆柱的侧面积,再来求圆柱上底与下底的面积,再把三者相加,方能求出圆柱的表面积。虽然它的表面积求法复杂一些,但是唤肢,只要你掌握了方法与公式,今后熟能生巧,一定会做得很快。
    下面,我们来学圆锥。圆锥就是底面是一个圆,一直向上伸,直到顶部成尖尖的形状。其实,圆锥的体积也很容易求,只比圆柱的体积多出一个三分之一,就是:底面积x高?3。因为,所有圆锥,都是同底面同高度的圆柱的体积的1/3。所以先算出圆柱的和则世体积,再除以3,就是圆锥的体积了。
    圆锥的表面积书上虽然没有讲,但是我知道。
高年级立体图形教学论文
下载Doc文档

猜你喜欢